
Information and Software Technology 55 (2013) 1119–1142
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Empirical studies concerning the maintenance of UML diagrams and
their use in the maintenance of code: A systematic mapping study
0950-5849/$ - see front matter � 2013 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.infsof.2012.12.006

⇑ Corresponding author at: Alarcos Quality Center, University of Castilla-La Mancha, Spain.
E-mail addresses: ana.fernandez@alarcosqualitycenter.com (A.M. Fernández-Sáez), Marcela.Genero@uclm.es (M. Genero), chaudron@liacs.nl, chaudron@cha

(M.R.V. Chaudron).
Ana M. Fernández-Sáez a,c,⇑, Marcela Genero b, Michel R.V. Chaudron c,d

a Alarcos Quality Center, University of Castilla-La Mancha, Spain
b ALARCOS Research Group, Department of Technologies and Information Systems, University of Castilla-La Mancha, Spain
c Leiden Institute of Advanced Computer Science, LeidenUniversity, The Netherlands
d Joint Computer Science and Engineering Department of Chalmers University of Technology and University of Gothenburg, SE-412 96 Gõteborg, Sweden
a r t i c l e i n f o

Article history:
Received 1 December 2011
Received in revised form 12 December 2012
Accepted 14 December 2012
Available online 4 February 2013

Keywords:
UML
Empirical studies
Software maintenance
Systematic mapping study
Systematic literature review
a b s t r a c t

Context: The Unified Modelling Language (UML) has, after ten years, become established as the de facto
standard for the modelling of object-oriented software systems. It is therefore relevant to investigate
whether its use is important as regards the costs involved in its implantation in industry being worth-
while.
Method: We have carried out a systematic mapping study to collect the empirical studies published in
order to discover ‘‘What is the current existing empirical evidence with regard to the use of UML dia-
grams in source code maintenance and the maintenance of the UML diagrams themselves?
Results: We found 38 papers, which contained 63 experiments and 3 case studies.
Conclusion: Although there is common belief that the use of UML is beneficial for source code mainte-
nance, since the quality of the modifications is greater when UML diagrams are available, only 3 papers
concerning this issue have been published. Most research (60 empirical studies) concerns the maintain-
ability and comprehensibility of the UML diagrams themselves which form part of the system’s docu-
mentation, since it is assumed that they may influence source code maintainability, although this has
not been empirically validated. Moreover, the generalizability of the majority of the experiments is ques-
tionable given the material, tasks and subjects used. There is thus a need for more experiments and case
studies to be performed in industrial contexts, i.e., with real systems and using maintenance tasks con-
ducted by practitioners under real conditions that truly show the utility of UML diagrams in maintaining
code, and that the fact that a diagram is more comprehensible or modifiable influences the maintainabil-
ity of the code itself. This utility should also be studied from the viewpoint of cost and productivity, and
the consistent and simultaneous maintenance of diagrams and code must also be considered in future
empirical studies.

� 2013 Published by Elsevier B.V.
Contents
1. Introduction . 1120
2. Related work. 1121
3. Planning . 1122
4. Conducting the review. 1125
5. Reporting results and data synthesis . 1125
5.1. Counting empirical studies . 1126
5.2. Answers to the research questions. 1127
5.2.1. RQ1: Which diagrams are most frequently used in studies concerning the maintenance of UML diagrams or the maintenance
of source code when using UML diagrams? . 1127

5.2.2. RQ2: Which dependent variables are investigated in the empirical studies?/How are they measured? 1127
5.2.3. RQ3: What is the state-of-the-art in empirical studies concerning the maintenance of UML diagrams or the maintenance of

source code when using UML diagrams? . 1128
lmers.se

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.infsof.2012.12.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2012.12.006
mailto:ana.fernandez@alarcosqualitycenter.com
mailto:Marcela.Genero@uclm.es
mailto:chaudron@liacs.nl
mailto:chaudron@chalmers.se
http://dx.doi.org/10.1016/j.infsof.2012.12.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1120 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
5.2.4. RQ4: Which of the factors studied influence the maintainability of a system (source code and diagrams)? 1131

5.3. Additional results . 1133
6. Discussion. 1134
7. Threats to validity . 1136
8. Conclusions. 1136

Acknowledgements . 1138
Appendix A. List of primary studies . 1138
Appendix B. Definitions of measures . 1139

B.1. Correctness . 1139
B.2. Accuracy. 1139
B.3. Effectiveness . 1139
B.4. F-Measure . 1139
B.4.1. Recall . 1139
B.4.2. Precision . 1139
B.5. Efficiency . 1140
B.6. Relative time (for a correct answer) . 1140
B.7. Perceived comprehensibility. 1140
B.8. Perceived ease of construction . 1140
B.9. Time . 1140
B.10. Errors . 1140

Appendix C. The search strings . 1140

C.1. ACM and IEEE search string . 1140
C.2. Science Direct and SCOPUS search string . 1140
C.3. Springerlink search string. 1140
C.4. Wiley Inter Science search string . 1141

References . 1141
1. Introduction

UML was first introduced in 1997, and became a de facto stan-
dard for the modelling of object-oriented software systems in 2000
[1]. It subsequently evolved and the latest version appeared in
2009 (UML 2.3) [2]. Owing to the increasing complexity of software
projects at the present time, the UML has emerged as a tool which
is being used to increase the understanding between customers
and developers (in the analysis phase). It is also being employed
to improve the communication among team members [3] and to
broaden the understanding of how software works (in both the
development and maintenance phases).

Despite all this, any type of investment must be justified from
an economic point of view, in the sense that there should be a pay-
back at a later phase. In the context of software projects, therefore,
investment in modelling should be justified by benefits that can be
gained later, during software development or maintenance. Such
benefits might include improved productivity and better product
quality. The existence of these potential advantages is one of the
main reasons for investigating whether the use of the UML can
generate important differences that make the costs worthwhile.
This is particularly true in the context of software maintenance,
which consumes a large part of software development resources.
Maintenance typically accounts for 40 to 80 percentage of software
costs [4,5].

More than fifteen years have passed since 1997, when the UML
was first introduced as a modelling language to describe object-
oriented software systems. A comprehensive review of the
empirical literature on software engineering is an important step
towards its use in maintenance. That being so, it would be useful
for the software industry to know what empirical evidence exists
as regards the use of the UML in the maintenance of source code
and the maintenance of the UML diagrams themselves. With this
purpose in mind, we decided to perform a review of the literature
related to this issue in order to answer our main research question:

What is the current existing empirical evidence with regard to the
use of UML diagrams in source code maintenance and the mainte-
nance of the UML diagrams themselves?
The scientific literature found differentiated several types of
systematic reviews[6], including the following:

� Conventional systematic reviews[6], which aggregated results
concerning the effectiveness of a treatment, intervention, or
technology, and were related to specific research questions, and
� Mapping studies [7]whose aim was to identify all research

related to a specific topic, i.e. to answer broader questions
related to trends in research. Typical questions are exploratory.

This paper aims to present a systematic review of papers dealing
with the use of UML diagrams in source code maintenance and the
maintenance of the UML diagrams themselves. This work is classi-
fied as a secondary study since it is a review of primary studies. A
proper systematic review of the literature follows a rigorous and
systematic approach, like that described by Kitchenham and Char-
ters [8]. This approach was therefore used as a basis to perform a
systematic mapping study, owing to the need to adopt systematic
approaches towards assessing and aggregating research outcomes
in order to provide a balanced and objective summary of research
evidence for this particular topic. Our goal was to collect
evidence that could be used to guide research and practice, and
we therefore consider this systematic mapping study to be part of
the evidence based software engineering effort [8].

With regard to our main research question, it is important to note
that, on the one hand, most companies only maintain the source
code of a system without updating the diagrams which represent
it [9]. This may influence the subsequent maintenance of the same
system, which might be misunderstood as a result of inconsisten-
cies. The experience of several researchers belonging to the
FaST-RE research group (Leiden University), headed by Michel R.V.
Chaudron, which has a long tradition of collaborating with industrial
partners, reflected that the lack of maintenance of diagrams can
occur for several reasons such as time constraints, a low level of
comprehension of diagrams, or a low modifiability of diagrams.

On the other hand, software development itself is becoming
more model-centric [10]. Both the OMG Model Driven Architecture
[11] and the recent growth of the Model-Driven Development
(MDD) software engineering paradigm [12] emphasize the role of

A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142 1121
modelling in the development (and hence in the maintenance) of
software systems. MDD treats software development as a set of
transformations between successive models, from requirements
to analysis, to design, to implementation, and to deployment
[13]. MDD’s defining characteristic is that the primary focus and
products of software development/maintenance are models, rather
than computer programs.

These facts also led us to focus on the importance of investigat-
ing the maintenance of the models/diagrams themselves, and of
attempting to discover whether the diagrams are understandable
and modifiable to an extent that would allow maintainers to per-
form the changes that need to be made to them at the same time
as they are maintaining the source code.

At this point, we shall define what maintenance is considered to
be in this paper. The software production process can be broken
down into various phases. The most commonly-defined phases
are the following: analysis and requirements definition, design,
implementation, testing and installation, and operation and main-
tenance [14].

Maintenance is defined as the modification of a software prod-
uct after it has been delivered (to users or customers) in order to
correct faults, improve performance or other attributes, add new
functionalities, or adapt it to a changing environment [15].

As is common in the maintenance literature [16], we considered
two of the major types of tasks included in maintenance:

� Understanding/comprehending the software artifact: in order
to modify a program, programmers need to understand its func-
tionality and requirements, its internal structure and its operat-
ing requirements. This is necessary if the impact of changes is to
be understood.
� Modification of the software artifact: in order to incorporate the

necessary changes, a maintenance engineer should create, mod-
ify and verify data structures, logic processes, interfaces and
documentation. Programmers should have an in-depth knowl-
edge of the impact on the system of the changes being made
in order to avoid possible side effects.

The aforementioned tasks used as part of the maintenance and
the maintainability sub-characteristics proposed in the ISO 25000
[17] were additionally used as a basis to focus our study on
modifiability as part of maintenance tasks. Moreover, although
understandability is not considered to be a maintainability sub-
characteristic in the ISO 25000, we consider it to be part of mainte-
nance since a considerable amount of works judge understandability
to be a factor that influences maintainability [18–21]. A software
artefact must be well-understood before any changes can be made
to it. We also took misinterpretation as being a factor that influences
the understandability of a system and thus its maintainability.

The remainder of this paper is organized as follows. Section 2
presents a brief discussion of related work. This is followed by
the explanation of each step of the systematic mapping study pro-
cess. The explanation of the steps involved in planning and conduct-
ing the study can be found in Sections 3 and 4, respectively. The
reporting results step and data synthesis of the systematic mapping
study are presented in Section 5.A discussion of the results is pre-
sented in Section 6, along with the implications of these findings.
Section 7 presents the threats to the validity of this systematic
mapping study. Finally, in Section 8, the conclusions reached are
set out and future research possibilities are discussed.
2. Related work

To the best of our knowledge only one research study which
presents a literature review on the effect that the use of the UML
by developers has on the design and maintenance of
object-oriented software [22], and this review is different from
that performed here. On the one hand, it is worth noting that the
process carried out by Dzidek [22] is not strictly a systematic liter-
ature review or a systematic mapping study. The study relies on
the terms that a systematic literature review or systematic map-
ping study provides, but some activities are missing. In the plan-
ning step of the review there are no details about the creation of
a comprehensive review protocol. Moreover, the research study
limits the search for documents to a number of journals and con-
ferences that the author knows of and considers relevant (i.e., a
manual search was performed). The problem with this is that there
are also some important conferences on the subject, such as the
International Conference on Software Maintenance (ICSM) or the
European Conference on Software Maintenance and Reengineering
(CSMR), among others, which were not taken into account by the
author. Another difference is the search period, since in our study
the period under study is broader (from 1997 until 2010) than that
in [22], which covers the period until 2006. In addition, the re-
search questions were different. Dzidek focuses on efforts to find
documents that are relevant to the state-of-the-art of the use of
the UML in industry, and also seeks to discover the influence of
using supporting tools. In contrast, although the systematic map-
ping study presented in this paper also aims to obtain the state-
of-the-art of empirical studies related to the use of the UML in
maintenance tasks, it fixes its attention on how rigorously such
empirical studies have been performed (variables, diagrams used,
threats to validity, etc.) rather than concentrating on the tools used.
The effect of all these differences is that Dzidek obtained 23 pri-
mary studies, which is half the number of primary studies found
in the systematic mapping study presented in this paper, and only
10 papers are selected as primary studies in both pieces of work.

Another study, that of Budgen [23], does report a systematic lit-
erature review of empirical studies related to the UML, but its focus
is different from our systematic mapping study. It aims to discover
empirical studies concerning the use of the UML in general, in
addition to those concerning some of the properties of the UML.
Our focus, however, is specifically on the use of UML diagrams in
software maintenance. We do not consider those papers that deal
with the properties of the UML as a language, since we have con-
centrated on factors of UML diagrams when they are used in soft-
ware maintenance. The aforementioned study, moreover, took as
its main task an investigation into the methods and tools used
for UML notations or extensions (such as the Object Constraint
Language (OCL)). In addition, the papers in it were only those pub-
lished until 2008, and our study period is therefore broader. It is
also important to highlight that its data extraction form concen-
trates mainly on obtaining data related to how the empirical study
was carried out, and on the type of subjects and tasks. The environ-
ments in which the studies were carried out, the kind of systems
used, or the origin of the diagrams are not considered.

Genero et al. [24] present a systematic literature review on the
quality of UML diagrams, but it is not focused exclusively on main-
tenance, as the systematic mapping study reported on in this paper
is (less than 20% of the primary studies were related to maintain-
ability of the UML diagrams). It is worth mentioning that although
they did not focus solely on empirical evidence, 30% of their pri-
mary studies were empirical (24% of the total were experiments,
5% case studies, and 1% surveys).

Despite the fact that UML is widely used in practice, little is
known about how UML is actually used. A survey on the use of
UML presented by Dobing and Parsons [25] describes which UML
notations (diagram types) are commonly used. These authors ana-
lyze the use of each diagram from different points of view, i.e., how
are they used for client verification, for programmers’ specifica-
tions or for maintenance documentation purposes. This last

1122 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
category, i.e., maintenance documentation, is that which is most
closely related to the purpose of the systematic mapping study
presented herein. The authors stated that class, sequence, and
use case diagrams are most often used in practice.

3. Planning

Planning includes dividing the workload amongst the research-
ers and determining how the researchers will interact and conduct
the review; it also encompasses the development of the review
protocol itself. The planning step is concerned with developing
the protocol that prescribes a controlled procedure for conducting
the review. Our protocol included objectives, research questions,
a search strategy, and inclusion/exclusion criteria (as part of the
selection strategy), along with a data extraction form and the qual-
ity assessment criteria. The protocol was revised and refined in
iterations after the execution of each of the respective activities
in the review.

Our main objective is to gather empirical evidence in order to
discover whether software maintainers perform maintenance tasks
better (in terms of less time and fewer defects) when a UML
diagram is available, or whether the use of UML diagrams does
not decrease maintainers’ productivity or quality. We focus on
maintenance in general, independently of whether the mainte-
nance is performed solely on the code, or also on the diagrams, or
only on the diagrams and then translated to code. This objective al-
lowed us to derive a series of questions that we hoped to answer
with the results of our research:

RQ1: Which diagrams are most frequently used in studies concern-
ing the maintenance of UML diagrams or the maintenance of
source code when using UML diagrams?
RQ2: Which dependent variables are investigated in the empirical
studies?/How are they measured?
RQ3: What is the state-of-the-art in empirical studies concerning
the maintenance of UML diagrams or the maintenance of source
code when using UML diagrams?
RQ4: Which of the factors studied influence the maintainability of a
system (source code and diagrams)?

We aim to gather the existing empirical evidence within the
area of the maintenance of the UML diagrams or their use in main-
tenance tasks. In particular, we wish to take into account empirical
research on the topic. The latter is particularly important, since it
provides information about what we actually know in terms of
evidence.

Based on our research questions, we selected the major search
terms, which are ‘‘UML’’, ‘‘Maintenance’’ and ‘‘Empirical’’. The
alternative spellings and synonyms of, or terms related to, the ma-
jor terms are denominated as alternative terms (and are shown in
Table 1).The search terms were constructed using the following
steps [26]:

1. Define major terms.
2. Identify alternative spellings and synonyms of, or terms related

to, major terms.
Table 1
Search string.

Major terms Alternative terms

UML Unified Modelling Language
Maintenance Maintainability, Modularity, Reusability, Analyzability,

Changeability, Evolution, Evolvability, Modification, Stability,
Testability, Comprehensibility, Comprehension,
Understandability, Understanding, Misinterpretation

Empirical Experiment, Survey, Case study, Action research
3. Check the keywords in any relevant papers we already have.
4. Use the Boolean OR to incorporate alternative spellings, syn-

onyms or related terms.
5. Use the Boolean AND to link the major terms.

Only ‘‘Unified Modelling Language’’ was considered to be syn-
onymous with UML, rather than adding the name of each UML dia-
gram. This was because we aimed to cover all of the thirteen
diagrams that the UML includes.

As explained in the introduction, for terms related to mainte-
nance, we took all the maintainability sub-characteristics proposed
in the ISO 25000 [17]. Although understandability is not consid-
ered to be a maintainability sub-characteristic in the ISO 25000,
we included terms related to understandability since a consider-
able amount of works judge understandability to be a factor that
influences maintainability [18–21]. A software artefact must be
well-understood before any changes can be made to it. So, we also
took misinterpretation to be one of the factors that influence the
understandability of a system and thus its maintainability. This
being the case, we added this term to the search string.

We performed and automated searches in 6 digital libraries
rather than performing a manual search based on the following
assumptions (although subsequently published literature [27] con-
tradicts one of these assumptions): (1) it saves times during the
search; (2) all the sources in digital libraries are correctly indexed,
so all the available sources, i.e., conferences and journals, will be
taken into account, thus contributing towards improving the com-
pleteness of the results; and (3) if the search string is well con-
structed and it is sufficiently robust, all available research will be
found.

The complete search strategy is summarized in Table 2.
The papers that were included were those that presented any

kind of empirical study dealing with the use of the UML in mainte-
nance-related tasks, which had been written in English and which
were published between 1997 and January 2010.As the UML was
adopted by OMG in 1997 [1], it made no sense to search before that
period.

The following papers were excluded: pure discussion and opin-
ion papers, studies available only in the form of abstracts or Pow-
erPoint presentations, duplicates (for example, the same paper
included in more than one database or in more than one journal),
research focusing on issues other than maintenance processes
using the UML and their empirical validation, or where the major
terms were only mentioned as a general introductory term in the
paper’s abstract. Papers were also excluded if they dealt with
extensions to the UML, because our interest lay in the UML itself,
in the form specified by the OMG.

A summary of the selection strategy is shown in Table 3.
A template (Table 4) for data extraction was produced to ease

the activity of synthesizing the data gathered, inspired by the work
of [28]. Each of the papers was classified into several categories,
signifying that the template has two parts, the first of which is re-
lated to the metadata of the paper (title, author and name of pub-
lication) and the second one of which is related to the classification
of the paper according to the following categories:

1. Year of publication: The year in which the paper was pub-
lished. This field is not related to any RQ, but it contributes
additional results.

2. Type of publication: This could be a journal, a conference or
a workshop. This field is not related to any RQ, but it contrib-
utes additional results.

3. Empirical methods: This could be a case study, survey,
experiment, or action research. This field is related to RQ3.

4. Contexts: This could be a laboratory or an industrial context.
This field is related to RQ3.

Table 4
Data extraction form.

Table 3
Summary of selection strategy.

Inclusion criteria � Only English
� Date of publication: from January 1997 to March
2010
� Published and refereed works
� Terms satisfying the search string

Exclusion criteria for
titles and abstracts

� Pure discussion and opinion papers, studies
available only in the form of abstracts or
PowerPoint presentations
� Where the UML or maintenance are mentioned
only as general introductory terms in the paper’s
abstract and an approach or another type of
proposal is among the paper’s contributions

Exclusion criteria for full
text

� Papers that deal with UML extensions
� Papers that do not contain results of empirical
studies
� Papers that are a summary of a workshop

Table 2
Summary of search strategy.

Databases
searched

� SCOPUS database
� Science@Direct with the subject Computer Science
�Wiley InterScience with the subject of Computer Science
� IEEExplore
� ACM Digital Library
� SPRINGER database

Target items � Journal papers
� Workshop papers
� Conference papers

Search applied
to

Abstract – when this was not possible we searched in the
full text

Language Papers written in English
Publication

period
From January 1997 to January 2010 (inclusive)

A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142 1123
5. Number of subjects: This represents the sample size, or
number of subjects involved in the empirical study. This
field is related to RQ3.

6. Type of subjects: This could be students, professors, and
professionals. This field is related to RQ3.

7. Dependent variables and their measures: the dependent
variables selected and the measures used to measure them.
This field is related to RQ2.

8. Independent variables: the independent variables selected
in the study, i.e., what the treatments compared were. This
field is related to RQ3.

9. Tasks: the type of task performed during the empirical stud-
ies (test of the understandability of a diagram through a
questionnaire, modification tasks, etc.) and its duration
(expressed in minutes). This field is related to RQ2.

10. Available diagrams: In the original version of the UML sub-
mitted in 1997, there were 9 different diagrams with which
to model systems from different viewpoints. In UML 2.0
there are 4 new diagrams, making a total of 13. One of these,
the communication diagram, has a different name to that of
the original UML collaboration diagram. We use the name
from the original version, as it is seen more frequently. This
field is related to RQ1.

11. Objects to maintain: the empirical study can deal with
maintenance tasks in the code, in the code and diagrams
or in the diagrams only. This field is related to RQ3.

12. Type of system: the diagrams could represent a real system
or a prototype created specifically for the experiment, which
we have called a synthetic system. This field is related to
RQ3.

13. Origin of diagrams: this could be reverse engineering or a
development process. This field is not related to any RQ,
but it contributes additional results.

Table 5
Quality checklist.

Quality criteria Quality metrics (Max = 40points)

1. Regarding Aims and Objectives Total: 5 points
1.1. Is there a clear statement of the aims of the research? If there is a statement with the aims/objectives of the

research + 1
1.2. Is there a rationale for why the study was undertaken? If there is an explanation of the reason for undertaking

the research + 1
1.3. Do the authors state research questions? If the RQ are presented + 1
1.4. Do the authors state hypotheses and their underlying theories? If the hypotheses are presented + 1

If the hypotheses are explained + 1

2. Regarding the Context Total: 5 points
2.1. Do the authors describe the sample and experimental units (=experimental materials and participants

as individuals or teams)?
If the materials are presented + 1
If the participants are presented + 1

2.2. Was the recruitment strategy appropriate to the aims of the research? If the recruitment strategy is explained + 1
2.3. Do the authors explain how experimental units were defined and selected? If the selection of materials is presented + 1

If the selection of subjects is presented + 1

3. Regarding the Design of the Experiment Total: 2 points
3.1. Has the researcher justified the research design (e.g., have the authors discussed how they decided

which methods to use – blocking, within or between-subject design; do treatments have levels)?
If the design of the experiment is justified + 1

3.2. Do the authors define/describe all treatments and all controls? If there is an explanation of the treatments + 1

4. Regarding Control Group Total: 1 point
4.1. Was there a control group with which to compare treatments? If there is a control group + 1

5. Regarding Data Collection Total: 5 points
5.1. Are all measures clearly defined (e.g., scale, unit, counting rules)? If the measures are defined + 1
5.2. Is it clear how data was collected (e.g., semi-structured interviews, focus group, etc.)? If there is an explanation of how the data were

collected + 1
5.3. Is the form of the data clear (e.g., tape recording, video material, notes, etc.)? If there is an explanation of the kind of data + 1
5.4. Are the tasks clearly defined (multiple choice, open questions, etc.)? If there is an explanation of the tasks + 1
5.5. Are quality control methods used to ensure consistency, completeness and accuracy of collected data? If the control methods are explained + 1

6. Regarding Data Analysis Procedures Total: 10 points
6.1. Do the authors justify their choice/describe the procedures/provide references to descriptions of the

procedures?
If there is a justification of the choice + 1
If there is description of procedures + 1
If there are references to procedures + 1

6.2. Do the authors report significance levels, effect sizes and power of tests? If there is a significance level + 1
If there is an effect size + 1
If there is a power of test + 1

6.3. If outliers are mentioned and excluded from the analysis, is this justified? If there is an explanation of outliers + 1
6.4. Has sufficient data been presented to support the findings? If there is sufficient data + 1
6.5. Do the authors report or provide references to raw data and/or descriptive statistics? If there is a link to raw data + 1

If there are descriptive statistics + 1

7. Regarding Threats to Validity/Bias Total: 7 points
7.1. Has the relationship between researchers and participants been adequately considered? If the relationship has been considered + 1
7.2. If the authors were the developers of some or all of the treatments, do the authors discuss the

implications of this anywhere in the paper?
If the implications were discussed + 1

7.3. Was there random allocation to treatments? If allocation is random + 1
7.4. Was training and conduct equivalent for all treatment groups? If training is equivalent + 1

If conduct is equivalent + 1
7.5. Was there allocation concealment, i.e. did the researchers know to which treatment each subject was

assigned?
If researcher doesn’t know which treatment is received
by each subject (double blind)+1

7.6. Do the researchers discuss the threats to validity? Threats to validity are explained + 1

8. Regarding Conclusions Total: 5 points
8.1. Do the authors present results clearly? If results are clear + 1
8.2. Do the authors present conclusions clearly? If conclusions are clear + 1
8.3. Are the conclusions warranted by the results and are the connections between the results and

conclusions presented clearly?
If conclusions are extracted from the results + 1

8.4. Do the authors discuss their conclusions in relation to the original research questions? If there is a link between RQ and conclusions + 1
8.5. Do the authors discuss whether or how the findings can be transferred to other populations, or

consider other ways in which the research can be used?
If there is a value for research or practice + 1

1124 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
14. Summary/Comments: a brief description of what is done in
the paper, and which factors were studied. This field is
related to RQ4.

As quality criteria for the primary study selection we decided to
include those papers that have been published in refereed sources
and that also contain empirical data. In addition, as is suggested in
[8], a quality checklist was defined for data synthesis and analysis.
As the research field is still immature, and since there are no other
review papers on the same topic, we did not want to exclude pa-
pers. The quality assessment was to be performed once the pri-
mary studies had been selected, the purpose being to assess the
rigor of each empirical study. We planned to verify whether or
not the publications did indeed either mention or discuss issues re-
lated to each of the quality metrics.

The criteria used for quality assessment were based on 8 ques-
tions (see Table 5) which were extracted from previous work, such
as the quality criteria presented by Dybå and Dingsøyr [29,30],
who based their quality assessment criteria on the Critical Apprai-
sal Skills Programme (CASP) [31] and principles of good practice for
conducting empirical research in software engineering [32]. Only a
few minor changes were made in order to customize the detailed

Table 6
Systematic mapping study outline.

Chronology Planning Conducting Reporting Outcome

March
2010

Protocol
development

Review protocol

April 2010 Data retrieval Table with the metadata of the papers (808).
Study selection on basis of abstracts
and titles

Table with the metadata of the primary
studies selected (148).

Remove duplicates Table with the metadata of the papers (85)
Retrieval of the files of the primary
studies

Repository of primary studies

May 2010 Protocol
improvement

Pilot data extraction Data extraction form with the classification
scheme refined. 85 primary studies reviewed

Study selection, quality assessment,
and classification based on the full
text

Data extraction form completed with the
classification of papers (53).

Resolution of queries in classification
of primary studies in group

Revised classification of the primary studies
(38).

Data synthesis

September
2010

Report on all the steps and activities carried out
during the systematic mapping study process.

Final report

A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142 1125
sub-criteria presented in Appendix B of [29]to our study. A sum-
mary of the quality assessment criteria is presented in Table 5,
along with the way in which each criterion was scored.
4. Conducting the review

Before presenting the conducting step, we wish to clarify that in
the remainder of this document, the term paper is used to refer to
the articles published in conferences, journals or workshops that
have been retrieved and are analysed in this literature review.
The term primary study (or empirical study) is used to refer to an
experiment or another type of empirical study reported in each pa-
per. Both original studies and replications are counted as primary
studies. As a paper may content more than one primary study,
the total number of primary studies is greater than the total num-
ber of papers.

The conducting step includes data retrieval, study selection, data
extraction, and data synthesis. In this section, the execution of
these activities, performed according the protocol defined above,
is explained.

Three researchers were involved in the review, which took
around 6 months to complete, and a schedule of which is shown
in Table 6. This illustrates the planning, conducting and reporting
steps on a time scale, along with the outcomes obtained as part
of each step.

In the planning step the protocol was defined, the details of
which were explained in the previous section. In the conducting
step we can see how the different documents were selected
according to their relevance. The outcomes show the results after
each step, such as the protocol review, or the number of papers
that we had at a given time.

The protocol was developed by the three authors of this paper,
and the searches were then carried out by the first author of the
paper. The results of these were used by the second author to per-
form the first study selection, using abstracts and titles. The first
author of the paper removed any duplicates and retrieved the data
needed in the candidates for primary studies. After this first cycle,
the protocol was improved by the three researchers. The study of
the selected papers, along with their classification based on the full
text, was carried out by the first author of the paper, who resolved
any queries she had with the other two authors. A sample of 10
random papers was selected by the second and third authors of
the paper to check the classification performed by the first author,
and all three of us agreed on the classification of the sample.
The Planning for the systematic mapping study began in March
2010, and papers published between 1997 and March 2010 were
retrieved in April 2010. 808 papers were found (Fig. 1). The title
and abstract of each of the papers was examined and all those
not dealing with empirical studies concerning the use of the UML
in maintenance tasks were excluded, thus reducing the total to
148 papers. 63 duplicate papers (since there is some overlap be-
tween the electronic databases covered by the different search en-
gines, and some papers were therefore found by more than one of
them) were discarded. The inclusion and exclusion criteria were
then applied by reading the full text of each of the 85 remaining
papers, leading to the discarding of 32 other papers. We then de-
tected that some of the empirical studies were included in more
than one paper, so we also eliminated those 15 papers which con-
tained results of empirical studies that had been summarized in
other papers (we maintained the last published paper related to
the same empirical study, which contained more details owing to
the fact that they were journal papers). The final classifications
were made on the final 38 papers, which reported66 primary stud-
ies (empirical studies), and these were then analyzed and the re-
sults interpreted.

We were conscious that the search string was extremely long,
and observed that, owing to the limitation of the search engines,
such a long string could not be used directly. It was therefore nec-
essary to tailor the search string to each digital library by splitting
the original and then combining the results manually. Current
search engines are not designed to support systematic literature
reviews or systematic mapping studies. Unlike medical research-
ers, software engineering researchers need to perform resource-
dependent searches [26]. In order to alleviate, in part, some of
the limitations of the search engines, we have used the tool known
as SLR-Tool [33], which allowed us to refine the searches. More
information on how the original search string was tailored to each
digital library is shown in Appendix C.
5. Reporting results and data synthesis

Finally, the reporting step presents and interprets the results. In
this section, we present the results of the systematic mapping
study based on the 30 papers eventually selected. The structure
of the results is based on the research questions which were set
out above in Section 3. Data extracted from the papers reviewed
were analyzed both quantitatively and qualitatively in order to an-
swer the research questions.

Search

Selection of relevant papers (using title and abstract) --> -660

Removal of duplicates (overlap of searches) --> -63

Removal of duplicates (overlap of empirical studies) --> -15

808

148

85

38

Selection of relevant papers (using full text) --> -32 53

Classification

Fig. 1. Selection process.

1126 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
5.1. Counting empirical studies

It is first necessary to explain some details about how the pa-
pers and the empirical studies were counted. Some papers col-
lected in our investigation reported a single empirical study or a
single replication. However, some other papers reported more than
one experiment or replication in a single paper and others reported
one or more replications together with an original study in a single
paper. In these cases, for only one paper we counted each replica-
tion and original separately (i.e., we had more than one primary
study), and this is why there are a different number of papers
and empirical studies. In the remainder of this paper each paper
will be called Px, in which x is the number of the paper. Each Px
is a complete reference to a paper listed in Appendix A.
We started with 38 papers and obtained a total of 66 empirical
studies, since some papers contained the results of more than one
empirical study, as explained previously, and it is for this reason
that we refer to ‘‘empirical studies’’ rather than ‘‘papers’’ when
answering some of the research questions. Moreover, an empirical
study may be related to more than one item from each of the cat-
egories defined, such as a paper related to the maintenance of class
diagrams but also of sequence diagrams. In this case that primary
study will therefore be counted twice. On the basis on this, the to-
tal number of empirical studies which appear in the result tables
may therefore be greater than 66 (resulting in a ‘‘fictitious’’ total).
The percentages are consequently calculated by using the ‘‘ficti-
tious’’ total as the basis, rather than by taking the actual number
of empirical studies (66) as a starting point. This is done to prevent

A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142 1127
percentages above 100%, which can sometimes hinder the under-
standability of the results.

5.2. Answers to the research questions

Firstly, we would like to remark that we found that only two pa-
pers ([P5] and [P8]) of the 38 are related to the use of UML dia-
grams in the maintenance of source code, and that the rest are
related to the maintenance of the UML diagrams themselves. These
two papers represent 3 of the 66 empirical studies mentioned
above. Although they are the only papers related to the mainte-
nance of source code and they are expected to answer only the first
part of our main research question, they also show results related
to the maintenance of the UML diagrams themselves. As such, they
also helped us to answer the second part of our main research
question (i.e., in the following subsections they will be counted
in the results for both parts of the question). In the following sub-
sections we answer our research questions.

5.2.1. RQ1: Which diagrams are most frequently used in studies
concerning the maintenance of UML diagrams or the maintenance of
source code when using UML diagrams?

We analysed the studies in an attempt to find any reference to
the 13 diagrams of the UML 2.3. The results which answer RQ1 are
shown in Table 6, although those diagrams of which no evidence
was found are omitted. 10.10% of the studies have been classified
as not being related to a specific type of UML diagram. The type
of diagram that is most frequently studied is the class diagram,
in 34.34% of the studies. 17.17% refer to sequence diagrams,
16.16% to statechart diagrams, and 11.11% refer to collaboration
diagrams. Only 8.08% of the studies selected relate to use case dia-
grams and 2.02% to activity diagrams, and only one study focused
on deployment diagrams. No studies addressing any of the four
new diagrams that were introduced with the UML 2.0.were found.

The low proportion of studies relating to use case diagrams is
noticeable (Table 7). This may be explained by the fact that there
are no studies addressing this type of diagram which are directly
related to maintenance tasks. This low figure might also be related
to the origin of the diagrams. In some cases the diagrams are ob-
tained from the source code, using reverse engineering, and in this
case neither use case diagrams nor sequence diagrams are gener-
ally available when using open source tools. Furthermore, use
cases say nothing about the structure of the system, and hence
do not contain information that a maintainer needs to perform
changes/modifications.

If we focus on the empirical studies that are related solely to the
use of UML diagrams in the maintenance of code, all of these (3)
used use case, class and sequence diagrams.

As mentioned above, the UML diagram that is studied most
extensively is the class diagram, as seen in the results presented
in [25], in which the most widely- used UML diagram in mainte-
Table 7
Results per type of diagram.

Available diagram Number of
studies

Percentage List of papers

Class diagrams 34 34.34% [P3], [P5], [P8], [P9], [P12], [
[P37]

Sequence diagrams 17 17.17% [P1], [P4], [P5], [P6], [P8], [P
Statechart diagrams 16 16.16% [P1], [P4], [P7], [P21], [P22]
Collaboration

diagrams
11 11.11% [P1], [P4], [P14], [P21], [P22

UML diagrams 10 10.10% [P16], [P17], [P23], [P25], [P
Use case diagrams 8 8.08% [P2], [P5], [P8], [P14], [P18]
Activity diagrams 2 2.02% [P33]
Deployment 1 1.01% [P35]
Total 99
nance documentation is the class diagram. In [25] other rankings
are provided based on different points of view or key purpose as
is mentioned in that paper. We focus solely on the ranking related
to maintenance documentation because it is the ranking which is
most frequently related to that presented here. Moreover, our
study places the sequence and statechart diagrams in high posi-
tions of use, which is consistent with the results provided in [25].
5.2.2. RQ2: Which dependent variables are investigated in the
empirical studies?/How are they measured?

The variables investigated when the mainainability of the UML
diagams is studied are now shown, ordered by the type of diagram
to which each is related: class diagrams (see Table 8), statechart
diagrams (see Table 9), sequence diagrams (see Table 10), collabo-
ration diagrams (see Table 11), use case diagrams (see Table 12),
and activity diagrams (see Table 13). We also have another broader
category: variables related to UML diagrams in general (see
Table 14).

If these tables are observed it will be noted that the variable
which is most widely-studied is the understandability of the class
diagrams (22.64%), followed by the understandability of statechart
diagrams (13.21%). Other common dependent variables are the
modifiability (12.26%) and the analyzability (7.55%) of class dia-
grams, since these are considered to be sub-characteristics of
maintainability. Maintainability is also studied as a whole (in class
diagrams (0.94%) and in the whole system (2.83%)).In addition,
there are several studies whose experiments address the under-
standability of other specific UML diagrams (11.32% of sequence
diagrams and 9.43% of collaboration diagrams).

The variables for those empirical studies related to the mainte-
nance of the source code when using UML diagrams (please recall
that these are also related to the maintenance of only the UML dia-
grams themselves) are presented in Table 15, and will be denomi-
nated as variables related tothe system in general (source code and
diagrams).Most of them are related to the time spent when per-
forming maintenance tasks and the correctness of the solution
(including its quality, measured through the number of errors).

The variety of measures of dependent variables included in the
66 empirical studies presented in the 38 papers included in this
systematic mapping study is relatively wide (Tables 8–15). On
the one hand, there are several measures that have different names
but measure the same concept (for example, in some papers the
percentage of correct answers is called correctness, while other pa-
pers call this measure effectiveness). In order to construct Tables 8–
15 and to count how many papers use the same measure, we have
grouped those measures that look at the same concept under one
name, so that the resulting number makes sense. The groups of
measures with the same name, along with the definition of each
measure and the papers in which they have been defined and used,
are detailed in Appendix B.
P13], [P14], [P18], [P19], [P20], [P22], [P24], [P26], [P28], [P29], [P32], [P35], [P36],

10], [P14], [P18], [P21], [P22], [P31], [P32], [P35], [P38]

], [P29], [P34], [P35], [P38]

27], [P30]
, [P35]

1128 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
As will be noted, most of the measures are based on objective
measures, such as the number of correct answers, the number of
questions, or the time spent on the tasks, in addition to different
calculations based on all of these. On the other hand, a minority
of studies use subjective variables, related to the subjects’ percep-
tions of the variable measured.

We were surprised to discover that none of the studies consid-
ered investigated the use of the UML in productivity in software
maintenance, since productivity is often a crucial factor which all
software development organizations attempt to maximize. One
of the reasons for this might be that measuring the impact of using
the UML on productivity in a project is no trivial task: it can be
both expensive and difficult, although there were two studies, re-
ported in [P5] and [P8], which did investigate the impact of the
UML on software maintenance in an experimental setting. We
would like to stress that productivity is an indirect measure which
needs some recognition and requires some form of model for its
derivation, perhaps based on other direct measures but also by
using some environmentally dependent factors. Productivity can
be derived from various final measures, which could make a com-
parison difficult. Another explanation for the lack of studies on the
use of the UML in productivity in software maintenance might be
that UML diagrams are rarely consulted in maintenance tasks. A
poor diagram/code correspondence could explain why the UML
diagrams for maintenance are ignored. But it is also very likely that
UML diagrams are consulted or not irrespective of their high or low
correspondence to the code, as is explained in [34].

For each study it is important to know what kind of tasks the
subjects had to perform in order to understand why one dependent
variable is used rather than another. Most of the studies that were
found perform tasks to test the comprehension of the diagrams.
This means that most of the tasks which are performed by the sub-
jects involve answering questionnaires. There are also some stud-
ies in which the tasks to be carried out are those of modifying a
diagram so that it meets certain requirements.

It is important to note that in many studies (almost 40%) the
duration of the tasks in not specified, and if it is specified, the dura-
tion of the task is usually short, from 1 to 2 hours in length (Ta-
ble 16) to avoid the situation of subjects becoming tired and
fatigued; this fatigue would be a threat to the internal validity of
the studies. In contrast, there are some uncontrolled experiments
in which the presence of the supervisor is not necessary and the
subjects have one week to complete the tasks (we consider these
to be experiments of 168 hours, i.e., 7 days multiplied by 24 hours
per day). There are studies which indicate the time in a measure
that cannot be translated into minutes (for example, papers that
measure the time taken to do the experiments in ‘‘sessions’’, in
which we do not know the length of each one). These studies have
not been taken into account in our calculations (as unconstrained
time studies) and they are included in the ‘‘others’’ category. This
signifies that, of all the studies found, the average time taken
amounts to 2166.53 min (36 hours, approximately).
5.2.3. RQ3: What is the state-of-the-art in empirical studies concerning
the maintenance of UML diagrams or the maintenance of source code
when using UML diagrams?

This subsection presents several issues related to the
state-of-the-art in empirical studies concerning the maintenance
of the UML diagrams themselves, or to the maintenance of source
code when using UML diagrams. These are the following: the type
of empirical study (i.e., the empirical methods), the kind of context
in which the empirical studies were executed, the kind of partici-
pants in the empirical studies (i.e., the subjects), what was main-
tained during the study (i.e., the object maintained), the type of
systems used during the studies, the treatments of the studies
(i.e., the independent variables), and finally, the quality of the
empirical studies and papers.

There are many research methods to choose from when carry-
ing out any investigation. We focused only on those studies that
are carried out empirically, as dictated by one of the inclusion cri-
teria. The results of the validation classification method are shown
in Table 17. We would remind the reader that the number of
empirical studies is higher than 38 owing to the fact that several
papers fall into more than one category, and we therefore have
66 empirical studies (for example, one paper contains both an
experiment and a case study). 95.45% of the studies report the re-
sults of a controlled experiment, as is shown in Table 17 (note that
all of the empirical studies concerning the use of the UML in the
maintenance of source code are in this category). This finding
shows the need to conduct more case studies, as this is a kind of
experimentation that deals with real environments and real
projects.

According to [35], a ‘‘case study is an empirical inquiry that
investigates a contemporary phenomenon within its real-life con-
text, especially when the boundaries between the phenomenon
and context are not clearly evident’’. Bearing this definition in
mind, although some studies claimed that a case study was being
presented, they were removed, because in actual fact they con-
tained only an example.

The context in which the studies were carried out could be an
industrial context or a laboratory (Table 18). Most of the studies
found regarding the maintainability of UML diagrams (83.33%)
are the results of experiments that have been conducted in labora-
tories within academic environments. In the case of the studies on
the maintenance of source code, all of these were performed with-
in a laboratory environment. There are also some papers that pres-
ent the results of empirical studies in industrial settings, but the
percentage of this type of studies is very low (4.55%). Those studies
that indicated that the subject under study could do the test at
home have been considered as having been carried out within a
non-controlled context (12.12%).

The average number of subjects used in the empirical studies in
the papers found is 41.19. Table 19 shows what types of subjects
were used in the empirical studies. The majority of empirical stud-
ies (77.63%) tended to be carried out with undergraduate students,
in the third, fourth or fifth year of the Computer Science degree.
This is not necessarily inappropriate [23,36], because the UML is
intended to support design tasks, and students’ design skills are
likely to be similar to those of non-expert professionals. A consid-
erably lower percentage of empirical studies was carried out by
members of the university teaching staff (10.53%) or by practitio-
ners (11.84%).

These results show that there is a need to perform more empir-
ical studies with practitioners in order to confirm whether the re-
sults obtained with students are also valid with the former type of
subjects.

We shall now go onto discuss the type of object(s) that had to
be maintained. Software maintenance tasks have always required
some changes to be made to the source code (Table 20). There is
the possibility of using diagrams to maintain the code and of
updating these diagrams to reflect the changes (16.67%), or there
is the option in which the diagrams are the only elements main-
tained (83.33%). This second option makes sense when attempting
to obtain empirical studies about the understandability of the dia-
grams. There are no studies that deal with the maintenance of the
code of a system supported by the use of the UML diagrams, but we
did find studies in which the UML diagrams are not maintained,
which is what appears to occur most often in practice.

Owing to the low percentage of empirical studies that examine
the maintenance of both diagram and code, there is no evidence to
allow us to really know whether the results obtained in studies

Table 8
Variables and measures for class diagrams.

Class diagrams
Dependent variable Measure Number of

studies
Percentage List of papers

Understandability 24 studies
22.64%

Time 16 15.09% [P3], [P9], [P12], [P17], [P18], [P19], [P28], [P29], [P32], [P36],
[P37]

Correctness 8 7.55% [P9], [P18], [P19], [P20]
F-measure 4 3.77% [P26]
Accuracy 5 4.72% [P17], [P24], [P29], [P36], [P37]
Effectiveness 6 5.66% [P19], [P32]
Errors 2 1.89% [P9], [P28]
Efficiency 2 1.89% [P20], [P32]
Perceived
comprehensibility

2 1.89% [P3], [P12]

Relative time 1 0.94% [P29]

Modifiability 13 studies 12.26% Time 11 10.38% [P3], [P11], [P12], [P13], [P19]
Correctness 7 6.60% [P13], [P19]
Effectiveness 7 6.60% [P13], [P19]
Perceived
comprehensibility

2 1.89% [P3], [P12]

Analyzability 8 studies 7.55% Time 6 5.66% [P3], [P11], [P12], [P13]
Perceived
comprehensibility

2 1.89% [P3], [P12]

Correctness 2 1.89% [P13]
Effectiveness 2 1.89% [P13]

Maintainability 1 study 0.94% Errors 1 0.94% [P27]
Quality 1 study 0.94% Accuracy 1 0.94% [P21]
Easy of construct 1 study 0.94% Accuracy 1 0.94% [P21]

Table 9
Variables and measures for statechart diagrams.

Statechart diagrams
Dependent variable Measure Number of

studies
Percentage List of

papers

Understandability 14
studies 13.21%

Time 6 5.66% [P4],
[P7],
[P21]

Efficiency 5 4.72% [P7]
Effectiveness 5 4.72% [P7]
F-measure 6 5.66% [P1], [P7]
Correctness 5 4.72% [P7]
Accuracy 3 2.85% [P4],

[P21]

A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142 1129
with isolated diagrams or isolated code can be generalized to real
environments. There is thus a need to carry out more studies of this
type, which deal with the maintenance of only the UML diagrams
themselves as part of the maintenance of the entire system. The
performances of maintainers when using up to date diagrams or
older versions of the documentation, e.g., that originate from the
design of a system, also need to be compared. In our opinion, the
degree of correspondence between diagrams and code could influ-
Table 10
Variables and measures for sequence diagrams.

Sequence diagrams
Dependent variable Measure N

Understandability 12 studies 11.32% Accuracy 8
Time 8
Correctness 2
Efficiency 1
Perceived comprehensibility 1
F-measure 1

Quality of construction 1 study 0.94% Accuracy 1
Time 1
Perceived ease of construction 1
ence some of the maintenance tasks. It is supposed that better re-
sults would be obtained when this correspondence is high.

At this point, we should discuss the origin of the materials used
in the studies. Most of the empirical studies that were found
(73.91%) used diagrams made from synthetic systems such as pro-
totypes or systems developed specifically for the study (Table 21).
Only 26.06% of the diagrams used represent real systems in oper-
ation. There is a need to perform more empirical studies with real
systems, since most studies address diagrams of small systems,
using convenience systems such as a library, ATM, etc., which
may not accurately represent the behaviour of large industrial
systems.

We also extracted some information about the independent
variables that were used in the empirical studies, i.e., whose treat-
ments were being used in the various experimental studies. Ta-
ble 22 shows that most of the empirical studies (42%) compare
different aspects of the UML diagrams, such as diagrams with ste-
reotypes vs. those without them, different levels of details in the
diagrams, etc. This is followed by the values of different metrics
which measure some aspects of the UML diagrams, such as com-
plexity, size, etc. (21%), the comparison between the UML and
other modelling languages (11%), the presence or absence of the
UML diagrams (8%), and so on. All the papers related to the use
umber of studies Percentage List of papers

7.55% [P4], [P6], [P14], [P21], [P22], [P31]
7.55% [P4], [P14], [P18], [P21], [P22], [P38]
1.89% [P10], [P18]
0.94% [P10]
0.94% [P14]
0.94% [P1]

0.94% [P14]
0.94% [P14]
0.94% [P14]

Table 11
Variables and measures for collaboration diagrams.

Collaboration diagrams
Dependent variable Measure Number of studies Percentage List of papers

Quality of construction 1 study 0.94% Accuracy 1 0.94% [P14]
Time 1 0.94% [P14]
Perceived ease of construction 1 0.94% [P14]

Understandability 10 studies 9.43% Accuracy 8 7.55% [P4], [P14], [P21], [P22], [P29], [P34]
Time 9 8.49% [P4], [P14], [P21], [P22], [P29], [P34], [P38]
Relative time 1 0.94% [P29]
Perceived comprehensibility 1 0.94% [P14]
F-measure 1 0.94% [P1]

Table 12
Variables and measures for use case diagrams.

Use case diagrams
Dependent variable Measure Number of studies Percentage List of papers

Understandability 2 studies 1.89% Accuracy 1 0.94% [P2]
Time 1 0.94% [P18]
Correctness 1 0.94% [P18]

Retention 1 study 0.94% Accuracy 1 0.94% [P2]
Problem-solving 1 study 0.94% Accuracy 1 0.94% [P2]

Table 13
Variables and measures for activity diagrams.

ACTIVITY DIAGRAMS
Dependent
variable

Measure Number of
studies

Percentage List of
papers

Complexity 2
studies 1.89%

Errors 2 1.89% [P33]
Number of
elements

1 0.94% [P33]

1130 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
of the UML diagrams when maintaining the source code are in this
last category.

Finally, we present the quality assessment results obtained by
applying the quality criteria shown in Table 5 to the primary stud-
ies. These papers were evaluated to discover whether or not they
covered these criteria, and the papers were therefore scored by
applying the quality measures shown in Table 5. It was possible
for a primary study to obtain a maximum of 40 points. Based on
that number, we decided to consider three categories: high quality
Table 15
Variables and measures for the system (source code and diagrams).

System
Dependent variable Measure N

Maintainability 3 studies 2.85% Time 3
Correctness 3
Errors 3

Understandability 1 study 0.94% F-measure 1

Table 14
Variables and measures for the UML diagrams, in general.

Diagrams (in general)
Dependent variable Measure

Understandability 7 studies 6.60% Accuracy
Time
Errors
Efficiency
F-measure

Error detection rate 2 studies 1.89% Errors
Learnability of modelled concepts 1 study 0.94% Errors
(from 25 to 40 points, i.e. papers with more than 60% of the total
points), medium quality (from 16 to 24 points, i.e. papers with
40–60% of the total points), and low quality (from 0 to 15 points,
i.e. papers with less than 40% of the total points).

Most of the 38 papers containing primary studies obtained a
relatively high score in this quality assessment, as is shown in Ta-
ble 23 (note that all of the papers related to the maintenance of
source code when using the UML are in this category).

If we focus on the first quality criterion, i.e., that related to the
description of Aims and Objectives, we can state that most of the
papers obtained a high score because only 1 paper obtained less
than 2 points out of 5. The majority of the papers had a good
description of the context in which the studies was performed,
since 73.68% obtained the maximum score (5) in the criterion
concerning the description of the Context. This might be owing
to the fact that the results of experiments in Software Engineering
cannot be generalized to the whole community and the results
are only valid for specific contexts, so they should be commented
on in a detailed manner. If we focus on the criterion concerning
umber of studies Percentage List of papers

2.85% [P5], [P8]
2.85% [P5], [P8]
2.85% [P5], [P8]

0.94% [P35]

Number of studies Percentage List of papers

3 2.85% [P17], [P23]
3 2.85% [P17], [P23]
2 1.89% [P16]
1 0.94% [P30]
1 0.94% [P25]

2 1.89% [P16]
1 0.94% [P15]

Table 16
Results per duration.

Duration (min) Number of studies Percentage List of papers

0–60 6 9.09% [P1], [P2], [P15], [P19], [P30], [P38]
61–120 12 18.18% [P10], [P13], [P14], [P18], [P20], [P23], [P29], [P33]
121–300 8 12.12% [P16], [P24], [P26], [P28], [P31]
301–1000 2 3.03% [P5]
‘‘+’’1000 8 12.12% [P3], [P8], [P11], [P12], [P13]
Not specified 26 39.36% [P4], [P6], [P7], [P9], [P16], [P17], [P19], [P21], [P22], [P25], [P27], [P32], [P35]
Others 4 6.06% [P4], [P33], [P34], [P36], [P37], [P38]
Total 66

Table 17
Results per empirical method.

Empirical
method

Number of
studies

Percentage List of papers

Experiment 63 95.45% [P1], [P2], [P3], [P4], [P5], [P6], [P7], [P8], [P9], [P10], [P11], [P12], [P13], [P14], [P15], [P26], [P18], [P19], [P20], [P21], [P22],
[P23], [P24], [P25], [P26], [P28], [P29], [P30], [P31], [P32], [P33], [P34], [P36], [P37], [P38]

Case study 3 4.55% [P27], [P27], [P35]
Survey 0 0.00% -
Action

Research
0 0 -

Total 66

A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142 1131
the description of the Design of the Experiment, almost half of the
papers (39.47%) provided a complete description of the design of
the paper. The same percentage of papers forgot to justify the re-
search design or the description of the treatments, more or less in
the same proportion. It is quite surprising that 21.08% of the pa-
pers did not obtain any score in this criterion because they did
not describe the design of the experiment. Upon focusing on
the next criterion, Control Group, we can state that half of the pa-
pers (52.63%) clearly describe the control group used to compare
the treatments and the other half do not. If we focus on the Data
Collection criterion, we can consider that the majority of papers
obtained high scores because only 18.42% obtained less than 3
points out of 5, but almost none of them described whether they
used a quality control method to ensure the consistency, com-
pleteness and accuracy of the data collected. The next criterion
concerns the description of the Data Analysis Procedures, in which
most of the papers obtained a medium score (50% of the papers
obtained from 4 to 6 point out of a maximum of 10). In this case
we cannot state that these papers are particularly good or bad at
describing this, but it is important to highlight that none of the
primary studies provide references to the raw data used to test
the results. One important section in papers is that concerning
Threats to Validity/Bias, which is related to our next criterion.
The maximum score obtained by papers in this category is 4
out of 7 points. As part of its analysis, we consider it important
to note that almost no primary study studied the influence be-
tween researchers and participants, or the implications of devel-
oping a special system to work on during the research, both of
which might influence the validity of the results. We would also
like to underline the need to clarify whether or not the review
was double blind, i.e., whether the researchers know which treat-
ment is received by each subject, in order not to influence the re-
sults when checking their responses. Our last criterion is related
to the description of the Conclusions of the study, in which the
Table 18
Results per context.

Context Number of studies Percentage List of papers

Laboratory 55 83.33% [P1], [P2], [P4], [P5
[P23], [P24], [P25],

Non-controlled 8 12.12% [P3], [P11], [P12], [
Industrial 3 4.55% [P17], [P27], [P35]
Total 65
majority of papers obtained a high score (63.16% obtained 4 out
of 5 points).

5.2.4. RQ4: Which of the factors studied influence the maintainability
of a system (source code and diagrams)?

We have extracted the different factors that can influence the
maintainability of systems from the studies analyzed in this system-
atic mapping study (Fig. 2). The factors are shown in rounded boxes,
and the rectangular boxes contain categories that we have added in
order to classify all the factors. A factor that has a positive influence is
represented with the symbol plus (+), and the negative influence is
indicated with the symbol minus (�). A number related to a further
explanation in the following paragraph is shown in brackets. As
mentioned previously, it is well known that understandability di-
rectly influences maintainability [18–21]. We therefore assume here
that those factors that are related to understandability are also re-
lated to maintainability.

The content of Fig. 2 is explained thus:

� The maintainability of a system is influenced by the maintain-
ability of its source code and its documentation, which can con-
sist of a text or models – UML or non UML models. OPM (non
UML) might be considered to be a better notation but only in
the context of modelling the dynamic aspect of Web applica-
tions. Other notations that are extensions of UML, like UML-B,
have a positive influence on maintainability since they facilitate
understanding.
� A maintainer’s skill also affects the maintainability of a system,

signifying that when a maintainer has some experience, this
will have a positive influence on the maintenance of the system.
� The maintainability of the source code is negatively influenced

when the complexity of the system is high, but it is positively
influenced by a correct traceability from the diagrams to the
source code.
], [P6], [P7], [P8], [P9], [P10], [P13], [P14], [P16], [P18], [P19], [P20], [P21], [P22],
[P26], [P28], [P29], [P30], [P31], [P32], [P33], [P34], [P36], [P37], [P38]
P13], [P15]

Table 19
Results per type of subject.

Type of
subjects

Number of
studies

Percentage List of papers

Students 59 77.63% [P1], [P2], [P3], [P4], [P5], [P6], [P7], [P9], [P10], [P11], [P12], [P13], [P14], [P15], [P16], [P17], [P18], [P19], [P20], [P21],
[P22], [P23], [P24], [P25], [P26], [P28], [P29], [P30], [P31], [P32], [P33], [P34], [P36], [P37], [P38]

Practitioners 9 11.84% [P6], [P7], [P8], [P16], [P17], [P27], [P29], [P35], [P38]
University

Lecturers
8 10.53% [P3], [P7], [P11], [P12], [P26], [P30]

Total 76

Table 20
Results per object to maintain.

Object to
maintain

Number of
studies

Percentage List of papers

Diagrams 55 83.33% [P1], [P2], [P3], [P4], [P6], [P7], [P9], [P10], [P11], [P12], [P13], [P14], [P15], [P16], [P17], [P18], [P19], [P20], [P21], [P22],
[P23], [P24], [P25], [P28], [P29], [P30], [P32], [P33], [P36], [P37], [P38]

Code + Diagrams 11 16.67% [P5], [P6], [P26], [P27], [P31], [P34], [P35]
Code 0 0.00% -
Total 66

1132 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
� The maintainability of the UML diagrams is positively influ-
enced by the presence of Reverse Engineered diagrams. These,
combined with forward design diagrams, help to detect possible
errors in the system, which facilitates its maintenance.
� The maintainability of the UML diagrams is positively influ-

enced by the availability of use case, class, sequence, activity
and statechart diagrams, and also whether the diagrams contain
stereotypes that detail certain characteristics of their elements.
All these characteristics are related to the way in which the
model is represented.
� Also related to the representation of models is the fact that the

level of detail in the UML diagrams additionally affects the
maintainability of systems (source code and diagrams), making
it ideal to have a higher level of detail.
� The use of composite states also improves the understandability

of the UML statechart diagrams. However, a high nesting level
of composite state in the UML statechart diagrams negatively
influences the understandability of these diagrams.
� With regard to the way in which models are visualized, the

availability of interactive views or animations to improve the
diagrams improves the visualization of a UML model, thus
improving its maintainability. What is more a proper distribu-
tion of the elements (an aesthetic diagram layout) improves
the maintainability of a UML diagram. However, the use of tex-
tual use cases has a negative influence on maintainability.

Details of how the classification process of the factors was car-
ried out are set out below. The maintainability of a whole can be
considered as the sum of the maintainabilities of each of its parts.
In this case, only code and diagrams (as part of the documentation
of the system) were considered as part of a system.

The maintainability of the diagrams consists of some character-
istics that are directly related to the diagram and others that the
reader of the diagram introduces. A diagram can be influenced by
Table 21
Results per type of system.

Type of
system

Number of
studies

Percentage List of papers

Synthetic 51 73.91% [P1], [P2], [P3], [P4], [P5], [P6], [P7], [P9], [P
[P23], [P24], [P29], [P31], [P32], [P33], [P3

Real 18 26.06% [P8], [P17], [P19], [P25], [P26], [P27], [P28
Total 69
its representation (the diagram itself, what is represented) and
the way in which it is presented to the reader, i.e., its visualization,
or its origin.

The maintainability of the code is influenced by both its own
characteristics and the characteristics from the diagrams (since
these provide complementary information about the code). In
addition, the reader of the code introduces some influential
factors.

In the following lines we will explain which paper refers to each
factor, referencing the numbers that appear in Fig. 2:

(1) Positive influence of some diagrams:
a. Class diagrams: [P5], [P8] and [P22].
b. Statechart diagrams: [P21] and [P22].
c. Sequence diagrams: [P1], [P4], [P5], [P8], [P14], [P21],

[P22] and [P38].
d. Activity diagrams: [P33].
e. Use case diagrams: [P2], [P5] and [P8].

(2) Positive influence of stereotypes: [P10], [P24], [P25], [P29]
and [P31].

(3) Negative influence of aggregations as a kind of relationship
in class diagrams: [P32].

(4) Influence of composite states: the use of composite states is
a positive influence, but if the nesting level is high, the influ-
ence is negative [P7].

(5) Positive influence of a high level of detail: [P20].
(6) Positive influence of aesthetic quality or layout: [P9], [P30],

[P34], [P36] and [P37].
(7) Positive influence of interactive views or the use of anima-

tions: [P6], [P15], [P17] and [P18].
(8) Negative influence of the use of textual use cases: [P2].
(9) Negative influence of the defects in the diagrams: [P16].

(10) Positive influence of traceability from diagrams to code:
[P35].
10], [P11], [P12], [P13], [P14], [P15], [P16], [P17], [P18], [P19], [P20], [P21], [P22],
4], [P38]
], [P30], [P35], [P36], [P37]

Table 22
Treatments in the empirical studies.

Treatments Description Number of
studies

Percentage Papers

UML vs. UML Composite states vs. non-composite states (or different
nesting levels)

10 15% [P7]

Diagrams with stereotypes vs. diagrams without
stereotypes

9 14% [P10], [P25], [P26], [P29], [P31],
[P37]

Sequence diagrams vs. collaboration diagrams vs.
statecharts

3 5% [P4], [P21]

Sequence diagrams vs. collaboration diagrams 3 5% [P14], [P38]
High Level of Detail vs. Low Level of Detail 1 2% [P20]
Diagrams with geons vs. diagrams without geons 1 2% [P15]
Animated diagrams vs. non-animated diagrams 1 2% [P6]

Measure X vs. measure Y Values of different measures calculated using the diagrams 14 21% [P3], [P11], [P12], [P13], [P19],
[P28]

UML vs. other modeling languages OML vs. UML 2 3% [P22]
EPC vs. UML 2 3% [P33]
OPM vs. UML 1 2% [P24]
UML vs. UML-B 1 2% [P23]
UML-B vs. UML + event-B diagrams 1 2% [P23]

UML vs. non UML Presence of UML diagrams vs. absence of UML diagrams 5 8% [P1], [P5], [P8], [P30]
Using or not a tool Using a tool (metricViewEvolution) vs. Not using a tool 3 5% [P17], [P18]
Layout X vs. layout Y Different layouts 2 3% [P9], [P36]
Defect X vs. defect Y Presence of different kinds of defects in the UML diagrams 2 3% [P16]
Notation X vs. notation Y Different notations (on the same diagram) 1 2% [P34]
Diagrams vs. text Use case diagrams vs. text cases 1 2% [P2]
Forward diagrams vs. RE diagrams Forward-designed diagrams vs. Reverse-Engineered

diagrams
1 2% [P27]

Retrieval method X vs. retrieval method
Y

Different retrieval methods of the UML diagrams 1 2% [P35]

Transformation rule X vs.
transformation rule Y

Different transformation rules between the UML diagrams 1 2% [P32]

Total 66

Table 23
Quality of primary studies.

Quality Number of papers Percentage List of papers

Low 4 10.53% [P6], [P27], [P32], [P35]
Medium 14 36.84% [P1], [P3], [P4], [P7], [P12], [P15], [P17], [P19], [P23], [P28], [P30],[P31], [P34], [P37], [P38]
High 20 52.63% [P2], [P5], [P8], [P9], [P10], [P11], [P13], [P14], [P16], [P18], [P20],[P21], [P22], [P24], [P25], [P26], [P29], [P33], [P36]
Total 38

A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142 1133
(11) Negative influence of the structural complexity: [P3], [P7],
[P11], [P12], [P13], [P19], and [P28].

(12) Positive influence of maintainers’ experience and ability:
[P26]

(13) Positive influence of other notations compared to UML in
modelling the dynamic aspect of Web applications: [P23].

(14) Positive influence of UML extensions (UML-B): [P27].
(15) Positive influence of the presence of diagrams extracted

from Reverse Engineering: [P24]

5.3. Additional results

The results obtained from the classification of papers are pre-
sented here within the ‘‘others’’ category.

Fig. 3 shows that every year an almost constant number of new
publications related to the topic of this study appear. This figure
may show that interest in this subject has been growing over time,
reaching its highest points in 2009. We should point out that the
number of papers in 2010 is small, because the search was only
performed until March 2010.Results reveal that there is a mean
of almost 5 papers published on this topic per year.

When analyzing the types of publication, we found that 39.47%
of the papers (15 papers) were published in conferences, 47.37% in
journals (18 papers) and 13.16% in workshops (5 papers). The first
paper in a journal appeared in 2002, with this figure increasing
over the following years to a maximum in 2009, when it reached
its highest level of 5 papers. This coincides with one of the
years with the highest number of publications (Fig. 3). The use of
UML diagrams in maintenance tasks has been judged to be a
‘‘hot topic’’, given the number of publications. The field is nonethe-
less quite mature, as is demonstrated by the percentage of journal
papers.

Table 24 shows only the publications with the largest number
of papers related to the topic being studied. The first three posi-
tions are occupied by journals: Information and Software Technol-
ogy (4 papers), IEEE Transactions on Software Engineering (3
papers), and Empirical Software Engineering (2 papers) which to-
gether represent almost 25% of the total. The conferences with
the highest number of papers are the International Conference on
Program Comprehension, the International Symposium on Empiri-
cal Software Engineering and International Symposium on Empir-
ical Software Engineering and Measurement, all of them with 2
papers, and each one of them representing nearly 6% of the total.
The workshop with the highest number of papers is the Interna-
tional Workshop on Visualizing Software for Understanding and
Analysis, with 2 papers.

It is also important to note that only 15.15% of the systems used
in the empirical studies are obtained from a reverse engineering
(RE) process, while 84.85% of the diagrams used are created during
the development process (Table 25).

Fig. 2. Factors that influence the maintainability of a system.

1134 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
6. Discussion

This systematic mapping study has discovered 38 relevant pa-
pers (containing 66 empirical studies) in peer-reviewed journals,
conferences, and workshops, and has classified them in order to
obtain responses to the research questions presented, which are
briefly summarized below:

� RQ1 asked: Which diagrams are most frequently used in studies
concerning the maintenance of UML diagrams or the mainte-
nance of source code when using UML diagrams? The results
show a clear order, which indicates the relative importance
that researchers attach to 3 diagram types when they study
the maintenance of the UML diagrams themselves or also
how they study the use of UML diagrams when performing
maintenance on the source code: class diagrams (34%),
sequence diagrams (17%) and statechart diagrams (16%).
Some studies performed partial comparisons of the under-
standability of one type of diagram versus another. The three
aforementioned diagrams are reported to contribute most to
understandability. The low occurrence of studies relating to
use case diagrams (8%) could be explained by the fact that
there are no studies addressing this type of diagrams
which are directly related to maintenance tasks (they
are always presented with other UML diagrams). This low
rate could also be related to the origin of the diagrams. In
some cases (about 15%), the diagrams are obtained from the
code by using reverse engineering. In this case, the use case
diagrams are not generally available. Furthermore, owing to
their high level of abstraction, use cases say nothing about
the structure of the system, and hence do not contain infor-
mation that a maintainer needs to perform changes/modifica-
tions which tend to be a lower level of information as regards
detail.
� RQ2 asked: Which variables are investigated in the empirical

studies?/How are they measured? Most of the empirical studies
found which focused on the maintenance of the UML diagrams
themselves concentrated on measuring the understandability of
class diagrams (23%) or statechart diagrams (13%). The mea-
sures used for this dependent variable are related to the time
spent by the subjects in understanding the UML diagrams and
the subjects’ effectiveness when performing the understand-
ability tasks. There are some more isolated studies focusing
on the use of the UML diagrams in maintenance tasks. In these
cases, the measures used are, apart from time, the correctness of
the solutions proposed and the quality of the code. It is sup-
posed that a better understanding of the diagram correlates
with a better understanding of the system, and that this should
positively influence the maintenance of the source code. How-
ever, sufficient work with which to validate this assumption is
not available. More studies are needed which deal with the
influence of UML diagrams on the maintainability of source
code.
� RQ3 asked: What is the state-of-the-art in empirical studies con-

cerning the maintenance of UML diagrams or the maintenance of
source code when using UML diagrams? To answer RQ3, an anal-
ysis based on different perspectives of the empirical literature
in the field is presented. The analysis is presented from the fol-
lowing three perspectives:
– How?:
How is the maintenance of the UML diagrams studied?
Most of the studies that were found present results of
controlled experiments (95%). This is a well-known way
in which to validate data, but the field would benefit
(in terms of generalizability) from the additional perfor-
mance of case studies. Industrial data or real projects
should be analyzed to confirm the results obtained in
the laboratory context.

– Where?:

Where are the empirical studies carried out? We now know
that most of the studies performed are controlled exper-
iments. These studies can be considered as only academic
results, since they were carried out in a laboratory
context (83%), so it is also necessary to perform more

Table 24
Number of papers per type of publication.

A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142 1135
empirical studies in industrial contexts to corroborate the
academic results.

– What?:

What types of subjects have been used in empirical studies?
The subjects that performed the tests are mostly students
(78%). A minority of studies involved members of the uni-
versity teaching staff (11%) or practitioners (12%). This
fact reveals that more empirical studies with practitio-
ners are necessary to strengthen the external validity of
the results. It would thus be feasible to ascertain whether
or not the findings obtained with students also hold for
practitioners.
What is maintained in the empirical studies? If we focus on
the results obtained in this systematic mapping study, we
can see that most of the studies are related to the main-
tenance of only the UML diagrams themselves (83%),
rather than to the UML diagrams and the code (14%). It
is also important to highlight that most of the diagrams
used represent prototypes of systems or very simple sys-
tems (74%). Using diagrams from true complex systems
when performing maintenance tasks would help to test
whether the UML has specific benefits. It is also impor-
tant to note that those experiments in which tasks are
related to the maintenance of the code, rather than sim-
ply maintaining a diagram, are more representative of
the current situation in industry. There should be more
studies which deal with the maintenance of the UML dia-
grams themselves as part of maintaining an entire sys-
tem. There also needs to be a comparison of the
maintainers’ performance when using up to date dia-
grams as opposed to using older versions of the docu-
Fig. 3. Number of papers pe
mentation – e.g., that originate from the design of a
system. In our opinion, the degree of correspondence
between diagrams and code could have an influence on
some maintenance tasks. It would be logical to expect
to obtain better results when this correspondence is high.
What are the treatments in the empirical studies? Most of
the empirical studies (42%) attempt to compare different
aspects of the UML diagrams, for example diagrams with
stereotypes vs. without them, different levels of details in
the diagrams, etc.
What is the quality of the papers found? More than half of
the papers (53%)obtained a relatively high score in this
quality assessment (note that all of the papers related
to the maintenance of source code when using the UML
are in this category), and only 9% obtained a low quality
score. The fact that most of the papers obtain the maxi-
mum points related to the description of the aims of
the research and its context is worth noting. None of
the primary studies, in contrast, provide a reference to
the raw data used to test the results.
� RQ4 asked: Which of the factors studied influence the maintain-
ability of a system (source code and diagrams)? These results
are summarized in a classification tree of factors in Fig. 2. It
will be observed that the presence of some specific diagrams,
such as the use of stereotypes and a good, correct layout, pos-
itively influences the maintainability of a system. There are
also other factors, such as a high structural complexity of the
system, a low level of detail in diagrams, a high nesting level
of composite states or the presence of defects in diagrams,
which have a negative influence on the maintainability of a
system.
r year.

Table 25
Diagrams obtained from RE.

Diagrams
from RE

Number of
studies

Percentage List of papers

Yes 10 15.15% [P25], [P26], [P27], [P28], [P30], [P36], [P37]
No 56 84.85% [P1], [P2], [P3], [P4], [P5], [P6], [P7], [P8], [P9], [P10], [P11], [P12], [P13], [P14], [P15], [P16], [P17], [P18], [P19], [P20], [P21],

[P22], [P23], [P24], [P29], [P31], [P32], [P33], [P34], [P35], [P48]
Total 66

1136 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
It is also noteworthy that only two papers are specifically re-
lated to empirical studies concerning the use of the UML in main-
tenance (modification) tasks:

� The first of these is [P5], which presents the results of two con-
trolled experiments carried out with students from different
universities. [P5]reports that the time taken to make changes
in the source code is less when the UML diagrams are used than
when they are not used, while if the time taken to perform the
corresponding modifications to diagrams is included, there is no
significant difference. In both cases, however, the quality of the
modifications is greater when the subjects have UML diagrams.
� [P8] presents the results of a controlled experiment carried out

with professionals. In both this paper and that mentioned above,
the time taken to perform the modifications to the system, the
time spent on maintaining the diagrams and the quality of the
proposed modifications are measured. This study [P8] does not
find any significant difference in the time spent on performing
changes, but the authors do find that the quality of the changes
is higher for the group of subjects with UML diagrams, as is the
case in [P5].

7. Threats to validity

We have classified the threats to validity on this study by fol-
lowing the classification provided by Wohlin et al. [38]. The main
threats to the validity of a systematic mapping study are publica-
tion selection bias (construct validity), inaccuracy in data extrac-
tion (construct validity), and misclassification (conclusion
validity) [37].

With regard to the construct validity, we considered six digital
sources, which included journals, conferences and workshops
which are relevant to software engineering. The scope of journals
and conferences covered in this systematic mapping study is suffi-
ciently wide to attain a reasonable completeness in the field stud-
ied. We did not include additional papers such as grey literature
(technical reports, PhD thesis, etc.), and limited ourselves to
peer-review publications. We believe that we have achieved a rea-
sonably complete coverage, as most grey literature either has its
origins in peer-reviewed papers or appears in what will eventually
become peer-reviewed papers; it may, however, be the case that
both of these circumstances are true for a given piece of grey liter-
ature. Some relevant papers might exist which have not been in-
cluded (which it might be possible to extract with the use of a
snowballing process), although our knowledge of this subject is
such that we do not believe that there are many of these. We per-
formed an automated search on 6 digital libraries in order not to
rule out papers from conferences or journals which deal with top-
ics of interest but may not be well-known sources. This could be a
threat to the validity of this work because manual searchers seem
to be more helpful than those which are automated but this re-
quires a previous knowledge of the source used in the search, as
is presented in the results of [27], but this work was published
after we had performed the search, and we have not therefore been
able to take these results into consideration. To help ensure an
unbiased selection process, we defined research questions in ad-
vance, organized the selection of papers as a multistage activity, in-
volved three researchers in this activity and documented the
reasons for inclusion/exclusion, as suggested in [39]. As was dis-
cussed above, the decisions to select the papers to be included as
primary studies in this systematic mapping study were made by
multiple researchers, and rigorous rules were followed. A further
challenge was that there is no keyword standard that we are aware
of which distinguishes between different quality characteristics,
nor are there methods in empirical software engineering that could
be used to extract quality characteristics and research methods in a
consistent manner.

Moreover, the duplication of papers is a potential threat to fre-
quency counts and to the statistics in this systematic mapping
study. The structure of the database managed by the SLR-Tool
[33], which was used to perform this systematic mapping study,
is designed to handle duplication, but one threat would be that
of duplication going undetected. However, at least two individuals
have read through all the relevant papers without detecting further
duplicates. We also found it quite difficult to manage the duplica-
tion of empirical studies performed by the same author but which
are reported as a part of other studies, i.e., different papers had a
part of their contents in common. We examined them exhaustively
in order to attempt to detect whether or not they were the same
study, following a fixed procedure, but the elimination or other-
wise of possible duplications might be a threat.

The fact that we also considered the term understandability as
an alternative term for maintainability, which a priori is not a real
synonym or sub-characteristic of it based on the ISO 25000 [17],
might be a threat of the validity of our work. However, we based
our decision on the results of previous works which judge under-
standability to be a factor that influences maintainability [18–21].

With regard to conclusion validity, we would like to comment
that when extracting data from papers there is a certain degree
of subjectivity in terms of what is and what is not determined to
be related. Furthermore, bias can affect the interpretation of the re-
sults. The data was extracted from the papers by one researcher
and checked by another. When necessary, disagreements were re-
solved through discussion by involving the third author. Data
extraction and classification from prose is difficult at any time,
and the lack of standard terminology and standards could very well
result in a misclassification. We believe, however, that the extrac-
tion and selection activity was rigorous and that it followed the
guidelines provided in [26]. The use of multiple experts to perform
the classification also reduced the risk of misclassification.
8. Conclusions

More than fifteen years on from when the UML was first
introduced in 1997, it would be useful for the software industry
to gather empirical evidence of use of the UML in the software
development life cycle, specifically in software maintenance, which
is the most resource-consuming phase. With that need to gather
such information in mind, this paper presents a systematic map-
ping study on empirical studies performed as regards the use of
UML diagrams in the maintenance of source code and also on the
maintenance of only the UML diagrams themselves. This systematic

A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142 1137
mapping study covers papers published in journals, conferences
and workshops, found via six digital libraries in the period between
January 1997 and March 2010.

The systematic manner in which this systematic mapping study
was carried out, by following the guidelines provided in [8], makes
this study rigorous and fair.

We would like to highlight two problems that were dealt with
during the process of the systematic mapping study:

� It is not usually possible to judge the relevance of a study from a
review of the abstract alone. The standard of IT and software
engineering abstracts is too poor to rely on when selecting pri-
mary studies, and this makes it necessary to review the full text.
When used properly, structured abstracts are very useful in
improving the quality and usefulness of the abstract [40]. Struc-
tured abstracts must contain the following sections: 1) Context
(the importance and relevance of the research), 2) Objectives
(the main objectives pursued), 3) Methods (the research
method followed and the proposal provided to attain the objec-
tives), and 4) Results (the main findings and conclusions
obtained).
� The search engines have some limitations when performing the

search on the abstract alone, or when the search string is quite
complex, and could not therefore be searched directly. The
search string thus had to be tailored to each digital library by
splitting the original and combining the results manually.
Current search engines are not designed to support systematic
literature reviews. Unlike medical researchers, software engi-
neering researchers need to perform resource-dependent
searches.

During this systematic mapping study we attempted to answer
one main research question: What is the current existing empirical
evidence with regard to the use of UML diagrams in source code main-
tenance and the maintenance of the UML diagrams themselves?

We found only two papers ([P5] and [P8]) which were able to
help us to answer the first part of this question. Two controlled
experiments in [P5] report how the presence of UML diagrams
can help to reduce the time needed to maintain the source code.
These two experiments and the experiment presented in [P8] show
that the quality of the modifications made by subjects is greater
when UML diagrams are available. Although the existing studies
related to the use of UML diagrams in source code maintenance
are in favour of using the UML for this kind of tasks since the qual-
ity of the modifications is greater when these diagrams are avail-
able, few papers concerning this issue have been published.

If we focus on the papers which deal with the maintenance of
only the UML diagrams themselves, we detected some studies
which present empirical results concerning the benefits of using
UML diagrams as opposed to simply using text, or how the avail-
ability of some specific diagrams (class, sequence, state, activity
and use case diagrams) can be a positive factor in the maintenance
of source code. We also found several pieces of research concerning
the maintenance of the UML diagrams themselves that reported
some factors which can improve that maintenance of these dia-
grams (such as the use of stereotypes, the use of composite states,
the use of a correct level of detail or of a correct layout), and which
will eventually influence the maintenance of the software system.
We also found studies concerning how factors that are external to
the system under maintenance might influence its maintenance,
such as the maintainers’ experience and ability.

The main findings according to the categories used to classify
the 38 selected primary studies are:

� Research method: Most of the studies present the results of
controlled experiments.
� Context: Most of the experiments are carried out in a laboratory
context.
� Subjects: Most of the experiments are performed by Computer

Science undergraduates.
� Dependent variable: The most common dependent variable

used in the empirical studies is the maintainability of class dia-
grams which is usually measured using time and accuracy.
� Available diagrams: The most widely-used diagrams in the

studies selected are class and sequence diagrams.
� Object to maintain: Most of the studies focus on maintaining

only the diagrams.
� Type of system: Synthetic systems are those most often used in

the studies found.
� Origin of diagrams: Most of the studies found use diagrams that

are not obtained from a reverse engineering process.
� Treatments:Most of the empirical studies compare different

aspects of UML diagrams, for example diagrams with stereo-
types vs. those without them, different levels of detail in the
diagrams, etc.
� Quality of papers: Almost 90% of the studies have a medium or

high quality.

Almost all the studies with regard to the study of the mainte-
nance of the UML diagrams themselves found are experiments that
compare different aspects of UML diagrams, but their external
validity, i.e., their generalizability, is questionable given the mate-
rial, tasks and subjects used.

In summary, one of the main findings is that there is a need
for studies that take into account the measurement of cost and
productivity, which are variables that have great repercussions
in industrial contexts. In order to strengthen the external valid-
ity, i.e., the generalizability of the empirical results, we suggest
that more experiments and case studies should be carried out in
industrial contexts, with real systems and maintenance tasks
performed by practitioners under real conditions. Studies con-
cerning how to improve the understandability of a UML diagram
(and hence the maintainability of the source code) are carried
out from different points of view, comparing different variables.
In addition, the maintenance of both diagrams and diagrams
and code together must be considered in future empirical
studies. It is important to note the lack of empirical studies
under real conditions, owing to the fact that the majority of
the studies presented used toy systems or prototypes. Due to
those reasons, we wish to stress the need for further empirical
studies carried out in industrial contexts to investigate whether
the use of the UML can lead to important differences that make
the costs involved worthwhile, particularly as regards source
code maintenance.

We suggest that the Software Engineering community should
share or exchange available resources, i.e., models and code, using
existing repositories (for example, ReMoDD [41]). After collecting
the documentation of some systems and selecting the most repre-
sentative ones, a benchmark could be created in order to make the
results of future empirical studies directly comparable. A reposi-
tory with experimental material would also help researchers to
provide more empirical results by generating new studies or repli-
cating the existing ones.

While conducting this systematic mapping study we detected
some studies which present empirical results concerning the ben-
efits of using UML diagrams (activity, class, sequence, statechart
and use case diagrams) as opposed to simply using text, or on
how the availability of some specific diagrams can be a positive
factor in the maintenance of source code. We also discovered sev-
eral pieces of research concerning the maintenance of the UML dia-
grams themselves which report some factors that can improve the
maintenance of the system.

1138 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
We would also like to provide references to some of the papers
which obtained high scores in the quality assessment (about 30 out
of 40 points) and which could be used as examples of good exper-
iments: P8, P10, P14, and P20.

To conclude this paper, we trust that the systematic mapping
study published herein will serve both as a guide to past research
in the area, and as a foundation for future research. This work is
also an attempt to support other researchers and practitioners by
providing a library of papers on empirical evidence concerning
the use of UML diagrams in the maintenance of both source code
and the UML diagrams themselves.
Acknowledgements

This research has been funded by the following projects: MEDU-
SAS (CDTI-MICINN and FEDER IDI-20090557), ORIGIN (CDTI-MIC-
INN and FEDER IDI-2010043(1-5)), PEGASO/MAGO (MICINN and
FEDER, TIN2009-13718-C02-01), and GEODAS-BC project (Ministe-
rio de Economía y Competitividad and FondoEuropeo de Desarrollo
Regional FEDER, TIN2012-37493-C03-01).
Appendix A. List of primary studies

The papers considered as primary studies in the systematic
mapping study presented in this paper and that have been treated
as primary studies are presented below.

P1. Abrahao, S., Insfran, E., Gravino, C., & Scanniello, G. (2009).
On the effectiveness of dynamic modeling in UML: Results from
an external replication. In the Proceedings of the 3rd Interna-
tional Symposium on Empirical Software Engineering and
Measurement (ESEM’09), 468–472.

P2. Gemino, A., & Parker, D. (2009). Use case diagrams in support
of use case modeling: Deriving understanding from the pic-
ture. Journal of Database Management, 20(1), 1–24.

P3. Manso, M. E., Genero, M., & Piattini, M. (2003). No-redundant
metrics for UML class diagram structural complexity. In the
Proceedings of the 15th International Conference on
Advanced Information Systems Engineering (CAiSE’08)
(LNCS 2681 pp. 127–142).

P4. Otero, M. C., & Dolado, J. J. (2004). Evaluation of the compre-
hension of the dynamic modeling in UML. Information and
Software Technology, 46(1), 35–53.

P5. Arisholm, E., Briand, L. C., Hove, S. E., & Labiche, Y. (2006).
The impact of UML documentation on software mainte-
nance: An experimental evaluation. IEEE Transactions on
Software Engineering, 32(6), 365–381.

P6. Burd, E., Overy, D., & Wheetman, A. (2002). Evaluating using
animation to improve understanding of sequence diagrams. In
the Proceedings of the 10th International Workshop on Pro-
gram Comprehension (IWPC’02), 107–107.

P7. Cruz-Lemus, J. A., Genero, M., & Piattini, M. (2008). Using
controlled experiments for validating UML statechart diagrams
measures. In the Proceedings of the International Workshop
in Software Measurement and International Conference on
Software Process and Product Measurement (IWSM/Men-
sura’07) (LNCS 4895 pp. 129–138).

P8. Dzidek, W. J., Arisholm, E., & Briand, L. C. (2008). A realistic
empirical evaluation of the costs and benefits of UML in soft-
ware maintenance. IEEE Transactions on Software Engineering,
34(3), 407–432.

P9. Eichelberger, H., & Schmid, K. (2009). Guidelines on the aes-
thetic quality of UML class diagrams. Information and Soft-
ware Technology, 51(12), 1686–1698.
P10. Genero, M., Cruz-Lemus, J. A., Caivano, D., Abrahão, S., Ins-
fran, E., & Carsí, J. A. (2008a). Assessing the influence of stereo-
types on the comprehension of UML sequence diagrams: A
controlled experiment. In the Proceedings of the 11th interna-
tional conference on Model Driven Engineering Languages
and Systems (MoDELS’09) (LNCS 5301 pp. 280–294).

P11. Genero, M., Moody, D. L., & Piattini, M. (2005). Assessing the
capability of internal metrics as early indicators of mainte-
nance effort through experimentation. Journal of Software
Maintenance and Evolution: Research and Practice, 17(3),
225–246.

P12. Genero, M., Piattini, M., & Calero, C. (2002). Empirical valida-
tion of class diagram metrics. In the Proceedings of the 2002
International Symposium on Empirical Software Engineering
(ISESE’02), 195–203.

P13. Genero, M., Piattini, M., Manso, E., & Cantone, G. (2003).
Building UML class diagram maintainability prediction models
based on early metrics. In the Proceedings of the 9th Interna-
tional Symposium on Software Metrics (METRICS’03), 263–
263.

P14. Glezer, C., Last, M., Nachmany, E., & Shoval, P. (2005). Quality
and comprehension of UML interaction diagrams-an experi-
mental comparison. Information and Software Technology,
47(10), 675–692.

P15. Irani, P., & Ware, C. (2004). The effect of a perceptual syntax on
the learnability of novel concepts. In the Proceedings of The
Eighth International Conference on Information Visualisa-
tion (IV’04), 308–314.

P16. Lange, C. F., & Chaudron, M. R. V. (2006). Effects of defects in
UML models: An experimental investigation. In the Proceed-
ings of The 28th International Conference on Software Engi-
neering (ICSE’06), 401–411.

P17. Lange, C. F., Wijns, M. A., & Chaudron, M. R. V. (2007). A visu-
alization framework for task-oriented modeling using UML. In
the Proceedings of the 40th Annual Hawaii International
Conference on System Sciences (HICSS’07), 289a-289a.

P18. Lange, C. F. J., Wijns, M. A. M., & Chaudron, M. R. V. (2007).
Supporting task-oriented modeling using interactive UML
views. Journal of Visual Languages and Computing, 18(4),
399–419.

P19. Manso, M. E., Cruz-Lemus, J. A., Genero, M., & Piattini, M.
(2009). Empirical validation of measures for UML class dia-
grams: A meta-analysis study. In the Proceedings of the Inter-
national Conference on Model Driven Engineering Languages
and Systems (MODELS’09) (LNCS 5421 pp. 303–313).

P20. Nugroho, A. (2009). Level of detail in UML models and its
impact on model comprehension: A controlled experiment.
Information and Software Technology, 51(12), 1670–1685.

P21. Otero, M. C., & Dolado, J. J. (2002). An initial experimental
assessment of the dynamic modelling in UML. Empirical Soft-
ware Engineering, 7(1), 27–47.

P22. Otero, M. C., & Dolado, J. J. (2005). An empirical comparison
of the dynamic modeling in OML and UML. Journal of Systems
and Software, 77(2), 91–102.

P23. Razali, R., Snook, C. F., & Poppleton, M. R. (2007). Comprehen-
sibility of UML-based formal model: a series of controlled exper-
iments. In the Proceedings of the 1st ACM International
Workshop on Empirical Assessment of Software Engineering
Languages and Technologies (WEASEL’07), 25–30.

P24. Reinhartz-Berger, I., & Dori, D. (2005). OPM vs.
UML – Experimenting with comprehension and construction
of web application models. Empirical Software Engineering,
10(1), 57–79.

P25. Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., & Ceccato,
M. (2006). An empirical study on the usefulness of Conallen’s
stereotypes in Web application comprehension. In the

A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142 1139
Proceedings of the Eighth IEEE International Symposium on
Web Site Evolution (WSE’06), 58–68.

P26. Ricca, F., Penta, M. D., Torchiano, M., Tonella, P., & Ceccato, M.
(2010). How developers’ experience and ability influence
web application comprehension tasks supported by UML
stereotypes: A series of four experiments. IEEE Transactions
on Software Engineering, 36(1), 96–118.

P27. Riva, C., Selonen, P., Systa, T., & Xu, J. (2004). UML-based
reverse engineering and model analysis approaches for software
architecture maintenance. In the Proceedings of the 20th IEEE
International Conference on Software Maintenance
(ICSM’04), 50–59.

P28. Sheldon, F. T., & Chung, H. (2006). Measuring the complexity
of class diagrams in reverse engineering: Research articles.
Journal of Software Maintenance and Evolution: Research and
Practice, 18(5), 333–350.

P29. Staron, M., Kuzniarz, L., & Wohlin, C. (2006). Empirical
assessment of using stereotypes to improve comprehension
of UML models: A set of experiments. Journal of Systems and
Software, 79(5), 727–742.

P30. Tilley, S., & Huang, S. (2003). A qualitative assessment of the
efficacy of UML diagrams as a form of graphical documentation
in aiding program understanding. In the Proceedings of the
21st Annual International Conference on Documentation
(SIGDOC’03), 184–191.

P31. Xie, S., Kraemer, E., & Stirewalt, R. E. K. (2007). Empirical eval-
uation of a UML sequence diagram with adornments to support
understanding of thread interactions. In the Proceedings of the
15th IEEE International Conference on Program Comprehen-
sion (ICPC’07), 123–134.

P32. Genero, M., Piattini, M., Abrahao, S., Insfran, E., Carsi, J. A., &
Ramos, I. (2007). A controlled experiment for selecting trans-
formations based on quality attributes in the context of MDA.
In the Proceedings of the First International Symposium
Empirical Software Engineering and Measurement
(ESEM’07), 498–498.

P33. Gross, A., & Doerr, J. (2009). EPC vs. UML activity diagram –
Two experiments examining their usefulness for requirements
engineering. In the Proceedings of the 2009 17th IEEE Inter-
national Requirements Engineering Conference (RE’09), 47–
56.

P34. Purchase, H. C., Colpoys, L., McGill, M., & Carrington, D.
(2002). UML collaboration diagram syntax: An empirical study
of comprehension. In the Proceedings of the First Interna-
tional Workshop on Visualizing Software for Understanding
and Analysis (VISSOFT’02), 13–22.

P35. Settimi, R., Cleland-Huang, J., Khadra, O. B., Mody, J., Lukasik,
W., & DePalma, C. (2004). Supporting software evolution
through dynamically retrieving traces to UML artifacts. In the
Proceedings of the 7th International Workshop on Principles
of Software Evolution (IWPSE’04), 268–272.

P36. Sharif, B., & Maletic, J. I. (2009a). The effect of layout on the
comprehension of UML class diagrams: A controlled experiment.
In the Proceedings of the 5th IEEE International Workshop
on Visualizing Software for Understanding and Analysis
(VISSOFT’09), 11–18.

P37. Sharif, B., & Maletic, J. I. (2009b). An empirical study on the
comprehension of stereotyped UML class diagram layouts. In
the Proceedings of the IEEE International Conference on Pro-
gram Comprehension (ICPC’09), 268–272.

P38. Swan, J., Barker, T., Britton, C., & Kutar, M. (2005). An empir-
ical study of factors that affect user performance when using
UML interaction diagrams. In the Proceedings of the Interna-
tional Symposium on Empirical Software Engineering
(ISESE’05), 10–10.
Appendix B. Definitions of measures

The definition of the measures for the dependent variables
used in the empirical studies covered in this systematic mapping
study is presented below. In the definition of the measures we
use the word question to simplify the definition, but we can also
refer to a task. Note that in Table 7, all the studies that use mea-
sures which measure the same concept are grouped together
(even though they were originally presented with different
names), using the names according to the classification set out
below.

B.1. Correctness

Definition: The percentage of questions that are answered
correctly.

Formula: Number of correct answers/Number of questions.
Papers which use this measure: [P9], [P7], [P8], [P9], [P18],

[P20], [P10].

B.2. Accuracy

Definition: the number of correct answers.
Papers which use this measure with this name: [P23], [P34],

[P36], [P37].
Papers which use this measure with different names:

� Total score: [P4], [P21], [P24], [P29].
� Correct interpretation: [P6].
� Number of responses: [P22].
� Comprehension: [P2].
� Without a specific name: [P14], [P17], [P31].

B.3. Effectiveness

Definition: The percentage of questions answered which are
correct.

Formula: Number of correct answers/Number of answers.
Papers which use this measure with this name: [P32].
Papers which use this measure with a different name:

� Correctness: [P7], [P13], [P19].

B.4. F-Measure

Definition: It is an aggregate measure which is a standard com-
bination of the recall and precision, defined as their harmonic mean.

Formula : F-Measure�
2 � precisions;irecalls;i

precisions;i þ recalls;i
B.4.1. Recall
Definition: It measures the fraction of expected items that are in

the answer.

Formula :
jAs;i \ Cij
jCij

where As,i is the Set of elements mentioned in the answer to ques-
tion i by subject s and Ci is the correct set of elements expected for
question i.

B.4.2. Precision
Definition: It measures the fraction of items in the answer that

are correct.

Fig. 4. Wiley advanced search.

1140 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
Formula :
jAs;i \ Cij
jAs;ij

where As,i is the Set of elements mentioned in the answer to ques-
tion i by subject s and Ci is the correct set of elements expected for
question i.

Papers which use this measure: [P1], [P25], [P26].

B.5. Efficiency

Definition: The number of correct answers per time units.
Formula: Number of correct answers/Time.
Papers which use this measure with this name: [P7], [P32],

[P10].
Papers which use this measure with a different name:

� Efficacy: [P17].

B.6. Relative time (for a correct answer)

Definition: It measures the time that a subject took to obtain a
correct answer.

Formula: Time/Number of correct answers.
Papers which use this measure: [P29], [P7].

B.7. Perceived comprehensibility

This is a subjective measure obtained as a ranking of the sub-
ject́s perceived understandability of a certain diagram. Measured
using a 1–5 Likert ordinal scale, where the score of 1 indicated that
the diagram was absolutely incomprehensible.

Papers which use this measure: [P3], [P12].

B.8. Perceived ease of construction

This is a subjective measure obtained as a ranking of the sub-
ject́s perceived ease of construction of a certain diagram. It is mea-
sured using a 1–5 Likert ordinal scale, where the score of 1
indicates that the diagram is very difficult.

Papers which use this measure: [P14].

B.9. Time

This is a measure which is used to calculate the number of units
of time used to perform a task.

Papers which use this measure: [P3], [P4], [P5], [P7], [P8], [P9],
[P11], [P12], [P13], [P14], [P17], [P18], [P19], [P21], [P22], [P23],
[P28], [P29], [P32], [P32], [P36], [P37], [P38].

B.10. Errors

This is a measure which counts the number of mistakes made in
solving a specific task.

Papers which use this measure: [P9], [P8], [P9], [P15], [P16],
[P27], [P28], [P33].
Appendix C. C. The search strings

The definition of the search strings used in each search engine is
presented as follows. As commented on in Table 1, we had three
major terms, and we also considered alternative spellings and syn-
onyms of, or terms related to, the major terms. The original search
string was:

(UML OR (Unified Modelling Language))
AND
(Maintenance OR Maintainability OR Modularity OR Reusability OR
Analyzability OR Changeability OR Evolution OR Evolvability OR
Modification OR
Stability OR Testability OR Comprehensibility OR Comprehension
OR Understandability OR Understanding OR Misinterpretation)
AND
(Empirical OR Experiment OR Survey OR Case study OR Action
research)

Owing to the limitation of the search engines, we observed that
such a long string could not be used directly in all the search en-
gines. It was therefore necessary to tailor the search string to each
digital library by splitting the original search string and then com-
bining the results manually. The search strings used for each digital
source are presented below.

C.1. ACM and IEEE search string

(Abstract:UML OR (Abstract:Unified AND Abstract:Modeling AND
Abstract:Language)) AND (Abstract:Maintenance OR Abstract:main-
tainability OR Abstract:modularity OR Abstract:reusability OR
Abstract:analyzability OR Abstract:changeability OR Abstract:evolu-
tion OR Abstract:evolvability OR(Abstract:modification AND
Abstract:stability) OR Abstract:testability OR Abstract:comprehensi-
bility OR Abstract:comprehension OR Abstract:understandability OR
Abstract:understanding) AND (Abstract:empirical OR Abstract:
experiment OR Abstract:survey OR (Abstract:case AND Abstract:stu-
dy) OR (Abstract:action AND Abstract:research)).

C.2. Science Direct and SCOPUS search string

TITLE-ABSTR-KEY((UML OR (Unified AND Modeling AND Lan-
guage)) AND (Maintenance OR maintainability OR modularity OR
reusability OR analyzability OR changeability OR evolution OR
evolvability OR(modification AND stability) OR testability OR com-
prehensibility OR comprehension OR understandability OR under-
standing) AND (empirical OR experiment OR survey OR (case AND
study) OR (action AND research))).

C.3. Springerlink search string

The search string was divided into 28 search strings because
this string only allows 10 terms to be placed in the search string
textbox. After the searches had been carried out, we combined
their results using the SLR-Tool, which automatically detects dupli-
cate papers.

A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142 1141
String 1: ab:(UML and maintenance and(empirical or experi-
ment or survey or(case and study)or(action and research))).
String 2: ab:(UML and maintainability and(empirical or exper-
iment or survey or(case and study)or(action and research))).
String 3:ab:(UML and modularity and(empirical or experiment
or survey or(case and study)or(action and research))).
String 4: ab:(UML and reusability and(empirical or experiment
or survey or(case and study)or(action and research))).
String 5:ab:(UML and analyzability and(empirical or experi-
ment or survey or(case and study)or(action and research))).
String 6:ab:(UML and changeability and(empirical or experi-
ment or survey or(case and study)or(action and research))).
String 7:ab:(UML and evolution and(empirical or experiment or
survey or(case and study)or(action and research))).
String 8:ab:(UML and evolvability and(empirical or experiment
or survey or(case and study)or(action and research))).
String 9:ab:(UML and(modification and stability)and(empirical
or experiment or survey or(case and study)or(action and
research))).
String 10:ab:(UML and testability and(empirical or experiment
or survey or(case and study)or(action and research))).
String 11:ab:(UML and comprehensibility and(empirical or
experiment or survey or(case and study)or(action and research))).
String 12:ab:(UML and comprehension and(empirical or exper-
iment or survey or(case and study)or(action and research))).
String 13: ab:(UML and understandability and(empirical or
experiment or survey or(case and study)or(action and
research))).
String 14:ab:(UML and understanding and (empirical or exper-
iment or survey or(case and study)or(action and research))).
String 15: ab:(‘‘Unified Modeling Language’’ and Maintenance
and(empirical or experiment or survey or(case and study)or(ac-
tion and research))).
String 16:ab:(‘‘Unified Modeling Language’’ and maintainability
and(empirical or experiment or survey or(case and study)or(ac-
tion and research))).
String 17:ab:(‘‘Unified Modeling Language’’ and modularity
and(empirical or experiment or survey or(case and study)or(ac-
tion and research))).
String 18:ab:(‘‘Unified Modeling Language’’ and reusability
and(empirical or experiment or survey or(case and study)or(ac-
tion and research))).
String 19:ab:(‘‘Unified Modeling Language’’ and analyzability
and(empirical or experiment or survey or(case and study)or(ac-
tion and research))).
String 20: ab:(‘‘Unified Modeling Language’’ and changeability
and(empirical or experiment or survey or(case and study)or(ac-
tion and research))).
String 21:ab:(‘‘Unified Modeling Language’’ and evolution
and(empirical or experiment or survey or(case and study)or(ac-
tion and research))).
String 22:ab:(‘‘Unified Modeling Language’’ and evolvability
and(empirical or experiment or survey or(case and study)or(ac-
tion and research))).
String 23:ab:(‘‘Unified Modeling Language’’ and(modification
and stability)and(empirical or experiment or survey or(case
and study)or(action and research))).
String 24:ab:(‘‘Unified Modeling Language’’ and testability
and(empirical or experiment or survey or(case and study)or(ac-
tion and research))).
String 25: ab:(‘‘Unified Modeling Language’’ and comprehensi-
bility and(empirical or experiment or survey or(case and
study)or(action and research))).
String 26:ab:(‘‘Unified Modeling Language’’ and comprehen-
sion and(empirical or experiment or survey or(case and study)-
or(action and research))).
String 27: ab:(‘‘Unified Modeling Language’’ and understand-
ability and(empirical or experiment or survey or(case and
study)or(action and research))).
String 28: ab:(‘‘Unified Modeling Language’’ and understanding
and(empirical or experiment or survey or(case and study)or(ac-
tion and research))).

C.4. Wiley Inter Science search string

We used the advanced search in which it is possible to use three
(or more) textboxes to enter complex strings (see Fig. 4). We used a
search string divided into three parts, which were linked by AND
connectors. Different textboxes were used to introduce each part
of the search string:

UML or (Unified and Modeling and Language)
AND
Maintenance OR maintainability OR modularity OR reusability
OR analyzability OR changeability OR evolution OR evolvability
OR (modification AND stability) OR testability OR comprehensi-
bility OR comprehension OR understandability OR understanding
AND
empirical OR experiment OR survey OR (case AND study) OR
(action AND research)
References

[1] OMG, The Unified Modeling Language. Documents Associated with UML
Version 1.3, Object Management Group, 2000 <http://www.omg.org/spec/
UML/1.3>.

[2] OMG, The Unified Modeling Language. Documents Associated with UML
Version 2.3, Object Management Group, 2010 <http://www.omg.org/spec/
UML/2.3>.

[3] A. Nugroho, M.R.V. Chaudron, Evaluating the impact of UML modeling on
software quality: An industrial case study, in: Proceeding of 12th International
Conference on Model Driven Engineering Languages and Systems
(MODELS’09), 2009.

[4] R.S. Pressman, Software Engineering: A Practitioners Approach, seventh ed.,
McGraw Hill, 2005.

[5] R. Glass, Facts and Fallacies of Software Engineering, Addison-Wesley, 2002.
[6] M. Petticrew, H. Roberts, Systematic Reviews in the Social Sciences, Blackwell

Publishing, 2006.
[7] H. Arksey, L. O’Malley, Scoping studies: towards a methodological framework,

International Journal of Social Research Methodology 8 (2005) 19–32.
[8] B. Kitchenham, S. Charters, Guidelines for performing systematic

literature reviews in software engineering, in, Keele University, EBSE-2007-
01, 2007.

[9] A. Forward, O. Badreddin, L.T.C., Perceptions of Software Modeling: A Survey of
Software Practitioners, in: 5th Workshop From Code Centric to Model Centric:
Evaluating the Effectiveness of MDD (C2M:EEMDD), Paris, France, 2010.

[10] P. Mohagheghi, V. Dehlen, T. Neple, Definitions and approaches to model
quality in model based software development – a review of literature,
Information and Software Technology 51 (2009) 1646–1669.

[11] OMG, MDA Guide, Version 1.0.1, 2003 <http://www.omg.org/mda/mda_files/
MDA_Guide_Version1-0.pdf>.

[12] C. Atkinson, T. Kühne, Model-driven development: a metamodeling
foundation, IEEE Software 20 (2003) 36–41.

[13] D. Thomas, MDA: revenge of the modelers or UML utopia?, IEEE Software 21
(2004) 15–17

[14] M. Priestley, M.H. Utt, Unified process for software and documentation
development, in: IEEE International Professional Communication Conference,
IEEE Professional Communication Society International Professional
Conference; Cambridge, MA, USA, 2000, pp. 221–238.

[15] IEEE, IEEE Standard for Software Maintenance, in: IEEE Std 1219–1993,
Institute of Electrical and Electronics Engineers, Inc., New York, 1993.

[16] M. Genero, J. Olivas, M. Piattini, F. Romero, Using Metrics to Predict OO
Information Systems Maintainability, Advanced Information Systems
Engineering, CAiSE2001, Lecture Notes in Computer Science 2068, 2068/
2001, 2001, pp. 388–401.

[17] ISO/IEC, ISO/IEC 25000: Software Engineering, in: Software Product Quality
Requirements and Evaluation (SQuaRe), International Organization for
Standarization, 2008.

[18] L. Briand, C. Bunse, J. Daly, A controlled experiment for evaluating quality
guidelines on the maintainability of object-oriented designs, IEEE Transactions
on Software Engineering 27 (2001) 513–530.

http://www.omg.org/spec/UML/1.3
http://www.omg.org/spec/UML/1.3
http://www.omg.org/spec/UML/2.3
http://www.omg.org/spec/UML/2.3
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf

1142 A.M. Fernández-Sáez et al. / Information and Software Technology 55 (2013) 1119–1142
[19] I. Deligiannis, M. Shepperd, S. Webster, M. Roumeliotis, A review of
experimental into investigations into object-oriented technology, Empirical
Software Engineering 7 (2002) 193–231.

[20] M. Genero, E. Manso, A. Visaggio, G. Canfora, M. Piattini, Building measure-
based prediction models for UML class diagram maintainability, Empirical
Software Engineering 12 (2007) 517–549.

[21] R. Harrison, S. Counsell, R. Nithi, Experimental assessment of the effect of
inheritance on the maintainability of object-oriented systems, The Journal of
Systems and Software 52 (2000) 173–179.

[22] W.J. Dzidek, Empirical evaluation of the costs and benefits of UML in software
maintenance, in: Faculty of Mathematics and Natural Sciences, University of
Oslo, Oslo, 2008, p. 198.

[23] D. Budgen, A.J. Burn, P. Brereton, B. Kitchenham, R. Pretorius, Empirical
evidence about the UML: a systematic literature review, Software: Practice
and Experience, 2010.

[24] M. Genero, A.M. Fernández-Sáez, H.J. Nelson, G. Poels, M. Piattini, Research
review: a systematic literature review on the quality of UML models, Journal of
Database Management 22 (2011) 46–70.

[25] B. Dobing, J. Parsons, How UML is used?, Communications of the ACM 49
(2006) 109–114

[26] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons from
applying the systematic literature review process within the software
engineering domain, Journal of Systems and Software 80 (2007) 571–583.

[27] B.A. Kitchenham, P. Brereton, M. Turner, M. Niazi, S.G. Linkman, R. Pretorius, D.
Budgen, Refining the systematic literature review process – two participant-
observer case studies, Empirical Software Engineering 15 (2010) 618–653.

[28] D. Šmite, C. Wohlin, T. Gorschek, R. Feldt, Empirical evidence in global software
engineering: a systematic review, Empirical Software Engineering 15 (2010)
91–118.

[29] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a
systematic review, Information and Software Technology 50 (2008)
833–859.

[30] T. Dybå, T. Dingsøyr, Strength of evidence in systematic reviews in software
engineering, in: Proceedings of the Second ACM–IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM’08),
ACM, 2008, pp. 178–187.

[31] Critical Appraisal Skills Programme, Public Health Resource Unit, 2008.
[32] B.A. Kitchenham, S. Pfleeger, D.C. Hoaglin, K.E. Emam, J. Rosenberg, Preliminary

guidelines for empirical research in software engineering, IEEE Transactions on
Software Engineering 28 (2002) 721–734.

[33] A.M. Fernández-Sáez, M. Genero, F.P. Romero, SLR-Tool: a tool for performing
systematic literature reviews, in: Proceedings of the 5th International
Conference on Software and Data Technologies (ICSOFT’10), 2010, pp.
157–166.

[34] A. Nugroho, M.R.V. Chaudron, A survey into the rigor of UML use and its
perceived impact on quality and productivity, in: Proceedings of the Second
International Symposium on Empirical Software Engineering and,
Measurement (ESEM’08), 2008, pp. 90–99.

[35] R. Yin, Case Study Research: Design and Methods, Sage Publications, Beverly
Hills, 1994.

[36] L. Kuzniarz, M. Staron, C. Wohlin, Students as Study Subjects in Software
Engineering Experimentation in: Proceedings of the 3rd Conference on
Software Engineering Research and Practice in Sweden, Lund, Sweden, 2003,
pp. 19–24.

[37] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanovic, N.
Liborg, A.C. Rekdal, A survey of controlled experiments in software
engineering, IEEE Transaction on Software Engineering 31 (2005) 733–753.

[38] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering: An Introduction, Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

[39] J. Liu, J. Dehlinger, R. Lutz, Safety analysis of software product lines using state-
based modeling, Journal of Object Technology 80 (2007) 1879–1892.

[40] D. Budgen, A.J. Burn, B. Kitchenham, Reporting computing projects through
structured abstracts: a quasi-experiment, Empirical Software Engineering 16
(2011) 244–277.

[41] R. France, J. Bieman, B.H.C. Cheng, Repository for model-driven development
(ReMoDD), in: T. Kühne (Ed.), Models in Software Engineering, Springer Lecture
Notes for Computer Science, Springer, Berlin/Heidelberg, 2007, pp. 311–317.

	Empirical studies concerning the maintenance of UML diagrams and their use in the maintenance of code: A systematic mapping study
	1 Introduction
	2 Related work
	3 Planning
	4 Conducting the review
	5 Reporting results and data synthesis
	5.1 Counting empirical studies
	5.2 Answers to the research questions
	5.2.1 RQ1: Which diagrams are most frequently used in studies concerning the maintenance of UML diagrams or the maintenance of source code when using UML diagrams?
	5.2.2 RQ2: Which dependent variables are investigated in the empirical studies?/How are they measured?
	5.2.3 RQ3: What is the state-of-the-art in empirical studies concerning the maintenance of UML diagrams or the maintenance of source code when using UML diagrams?
	5.2.4 RQ4: Which of the factors studied influence the maintainability of a system (source code and diagrams)?

	5.3 Additional results

	6 Discussion
	7 Threats to validity
	8 Conclusions
	Acknowledgements
	Appendix A List of primary studies
	Appendix B Definitions of measures
	B.1 Correctness
	B.2 Accuracy
	B.3 Effectiveness
	B.4 F-Measure
	B.4.1 Recall
	B.4.2 Precision

	B.5 Efficiency
	B.6 Relative time (for a correct answer)
	B.7 Perceived comprehensibility
	B.8 Perceived ease of construction
	B.9 Time
	B.10 Errors

	Appendix C C. The search strings
	C.1 ACM and IEEE search string
	C.2 Science Direct and SCOPUS search string
	C.3 Springerlink search string
	C.4 Wiley Inter Science search string

	References

